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gauge/matter

SUSY

Higgs

How?
Hints:

FCNC

CP
naturalness

µ

How?

CP: arg(m1/2µ(Bµ)∗) ≪ 1

0 < −(µ2 + m2

Hu
)|MSUSY

≪ m2

t̃naturalness:

These are all a part of the mu-problem.

We CANNOT discuss those without specifying 
the origin of mu.

Moreover, it is important to understand the origin of mu 
for LHC physics as signatures at the LHC will be very 
different depending on the size of mu.
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Answer to this question defines the most motivated search
strategy of supersymmetry at the LHC.

What’s the best model?

Let’s try to answer the question.

It is not necessarily covered by the well-studied models 
such as mSUGRA and "gauge mediation model".



               V (H) =
λH

4
(|H|2 − v

2)2 + (higher order in H)

λH

v

: self interaction of the Higgs boson
: scale of the electroweak symmetry breaking MW =

1√
2
gv

MH =
√

λHv

K = S†S − (S†S)2

Λ2
+ (higher order in S)

1/Λ2

m2

: self interaction of S

: scale of the supersymmetry breaking m3/2 =
m2

√
3MPl

mS =
m2

Λ
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Standard Model

SUSY

Standard Model of SUSY

H =









v + φ0 + iη0

φ+









VEV
Goldstone boson

Physical

2 parameters

reliable range: λH < O(4π) MH < O(
√

4πv)

S = (s, ψS, FS)

Physical

Goldstone fermion

VEV

W = m2S

2 parameters

reliable range:
m2

Λ2
< O(

√
4π) mS < O(

√
4πΛ)

FS = m2

This Standard Model serves as the effective theory of various 
SUSY breaking models.



               K = S†S − (S†S)2

Λ2
+ (higher order in S)
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m2(=
√

3m3/2MPl)

m2

Λ2
< O(

√
4π)

Lesson:
There is a Standard Model:

Once you specify the scale of SUSY breaking dynamics,

Λ
and the scale of the SUSY breaking,

the above Lagrangian is the effective theory if .

W = m2S

If you don’t care what’s going on above Λ,
this is sufficient for discussion. 

A wide class of models is covered by this Lagrangian.
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gauge/matterSUSY

m1/2 =
[f ]F
[f ]A

where L ∋ [fW αWα]F + h.c.

and f =
1

g2(Λ0)
− ∑

i

2bi
H

(4π)2
log

M i
H

Λ0

− 2bL

(4π)2
log

µ

Λ0

1.
1

g2(Λ0)
→ 1

g2(Λ0)
(S)

"gravity mediaiton"

2. "gauge mediaiton"M i
H →M i

H(S)

3. "anomaly mediaiton"Λ0 → Λ0φ (Fφ = FS/
√

3)

There are three terms.

or
1

g2(Λ0)
→ 1

g2(Λ0)
(T ) (FT ∝ FS)

There is always a singlet field. moduli problem

FCNC problem

Three possibilities for making f -> f(S)

CP problem (later)

for MH = kS S can carry a charge.
S → Seiθ

1/g2 → 1/g2

no FCNC

too large scalar mass or tachyonic sleptonM i
H →M i

Hφ
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HiggsSUSY

Giudice-Masiero mechanism

K ∋








1 +

(S + S†)

ΛX

+
S†S

Λ2
X








HuHd +








1 +

(S + S†)

ΛX

+
S†S

Λ2
X








(H†

uHu + H
†
dHd)

µ2 ∼ Bµ ∼ m2

H ∼







FS

ΛX







2

great. But no control of CP phase.

If S carries an (approximately) conserving charge, 

K ∋








1 +

(S + S†)

ΛX

+
S†S

Λ2
X








HuHd +








1 +

(S + S†)

ΛX

+
S†S

Λ2
X








(H†

uHu + H
†
dHd)

µ2 ∼ m2

H ∼







FS

ΛX







2

no CP phase.

Bµ = 0

Gauge mediation + Giudice-Masiero Mechanism looks perfect.

(direct communication between SUSY and Higgs)
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K = S†S − (S†S)2

Λ2

+









cµS
†HuHd

Λ
+ h.c.








− cHS†S(H†

uHu + H
†
dHd)

Λ2

+








1 − 4g4

(4π)4
C2(R)(log |S|)2








Φ†Φ ,

W = WYukawa(Φ) + m2S + w0 ,

f =
1

2









1

g2
− 2

(4π)2
log S









W αWα .

Sweet Spot Supersymmetry

SUSY breaking sector

coupling to Higgs sector

coupling to matter

coupling to gauge fields

(gauge mediation)

Now we have closed Lagrangian.

We can calculate all the spectrum and interaction terms.

Singurality at S=0 represents messenger fields in gauge mediation.

〈S〉 =

√
3Λ2

6MPl

The minimum is not at the singurality. ==> self consistent

(direct communication 
a la gravity mediation)

Hybrid of gravity and gauge mediation.

[RK’06]

[M.Ibe and RK ’07]
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K = S†S − (S†S)2

Λ2

+









cµS
†HuHd

Λ
+ h.c.








− cHS†S(H†

uHu + H
†
dHd)

Λ2

+








1 − 4g4

(4π)4
C2(R)(log |S|)2








Φ†Φ ,

W = WYukawa(Φ) + m2S + w0 + kSff̄ ,

f =
1

2









1

g2
− 2

(4π)2
log S









W αWα .

Sweet Spot Supersymmetry

SUSY breaking sector

coupling to Higgs sector

coupling to matter

coupling to gauge fields

(gauge mediation)

Now we have closed Lagrangian.

We can calculate all the spectrum and interaction terms.

Singurality at S=0 represents messenger fields in gauge mediation.

〈S〉 =

√
3Λ2

6MPl

The minimum is not at the singurality. ==> self consistent

(direct communication 
a la gravity mediation)

Hybrid of gravity and gauge mediation.

[RK’06]

[M.Ibe and RK ’07]
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0.0
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3/
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Grand Unification

Gravitino LSP

This is a perfect spot:

grand unification
gravitino dark matter
no FCNC/CP problem
no proton decay problem
no mu-problem
no moduli/gravitino problem...
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Not only that
there is an incredibly simple
GUT model to UV complete
this theory without neither
DT splitting problem nor
proton decay problem.

dark matter: 

S
hh

ψSψS

S preferably decays into "superparticles."

(gravitino) rare process

The decay amplitude is proportional to the soft mass.

Why µ ∼ m1/2 ?

mS ∼ mH



               meta-stable
Non-SUSY minimum
S=<S>

Initial Condition
at

Im
[S

]

Re[S]

−Λ/3

Λ/3

Λ/3−Λ/3

(Λ,Λ)

|S
|/

Λ

mSt

Dark Matter production
1. Coherent oscillation (after inflation) H ∼ mS ∼ 100 GeV

SUSY minimum

2. Decay of S-condensate H ∼ ΓS ∼ (100 MeV)2/MPl

main decay mode:

rare decay into gravitinos:

S → hh Br ∼ 1

S → ψ3/2ψ3/2 Br ∼ 10−6

This non-thermal production mechanism of gravitinos gives 
the largest contribution to the matter energy density.

0
0 〈S〉 6= 0

1 10 10 102 3

1

10-1

10-2

10-3

10-4

0

[M.Ibe, RK ’06]
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Q
, Q̄ T

f, f̄

SO(9)

SU(5) U(1)PQ

(global)

f, f̄
SU(3)× SU(2) (global)

Hu, Hd

S

×U(1)

SO(9) becomes strong

(weakly gauged)

U(1)PQ

(messengers)

(messengers)

(Standard Model)

Unification of 
Higgs+SUSY breaking+GUT breaking dynamics

[RK ’06]
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S
†

Hu Hd

X

q̄ q

S

Hu
q̄

X X X

H†
u

S†
X

S

X X

S†
X

X
S S†

mu-term?

X : colored Higgs fieldµ2

m2
H

∼ O







1

N







m2

S ∼ m2

H > 0

This is a somewhat general result of 
successful models.

Strongly coupled Higgs --> Problem in Yukawa --> some fields to generate Yukawa?
                                      --> FCNC

Weakly coupled Higgs -->
µ2

m2
H

≪ 1 --> unnatural EWSB

Semi-perturbative model is prefered. --> perturbative calculation reliable

µ2

m2
H

m2

S ∼ m2

H > 0small but not too small



               
[µ, Mmess, M̄ ]
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Soft SUSY breaking terms

We have three parameters: defines the Lagrangian

Very simple








M̄ = M3/g

2
3 ≡

FS

〈S〉









(Hybrid of gauge and gravity mediation)
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M3
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Theoretically preferred

light Higgsino + light stau

Stau NLSP is plausible
Large tanbeta
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Benchmark point: [µ,Mmess, M̄ ] = [300, 1010, 900][GeV]

light Higgsino
Stau NLSP (116GeV)

lifetime: O(1000) seconds almost stable, leave charged tracks

(~50%) (80~90%)

g̃

χ±
1 χ0

2,3

t (b)

t̄ (b̄)
q

q̃R

χ0

1

b (t)

t̄ (b̄)
(~30%)

g̃

q
(10~20%)

q

q̃L

χ±
2
, χ0

4g̃

q

(~30%)
(~30%)

(Higgsinos)

(Winos) (Bino)

(80~100%) (~80%)

τ̃

χ0

1,2,3

τ

χ0

4

τ̃ ντ

W∓

χ±
1

(~100%)

(~90%)

χ±
2

τ̃ ντ

h0

χ±
1

(~100%)

zoo of 3rd generation particles + 2 slow charged tracks

Gorgeous!  but analysis is difficult... no clear lepton signals
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stau mass can be measured with an accuracy of 100MeV!!

[Ambrosanio, Mele, Petrarca, Polesello, Rimoldi ’00]

100

150

200

0.4 0.6 0.8
β

meas

p
m

ea
s/

βγ
m

ea
s 

(G
eV

)

mτ̃ =
pτ̃

βγ

measure momentum
and velocity.

resolution of the velocity is roughly

σ(β)

β
= 3%× β

stau is almost stable (lifetime=O(1000s))

muon backgroundtwo slow
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[Ellis, Raklev, Oye ’06]

(80~100%)

τ̃

χ0

1,2,3

τ
mχ0 = Mτ̃ τ

But...
τ̃

τ̃

τ

1. Which is the correct combination?

2. We don’t know tau 4-momentum
    because of the missing ET by a neutrino.

Hinchiliffe and Paige (Gauge med.): select 1 stau events and endpoint analysis

Ellis et al (mSUGRA): -- use leptonic mode and use information of charge
                                    -- decomposition of missing ET to tau direction
                                    -- loose beta cut to enhance the statistics

Both are not directly applicable, but we basically follow Hinchiliffe and Paige.



               
page 17Analysis

We can expect sharp edges
at neutralino masses
in the M(stau-tau) distribution.

there is a sharp edge
at E(jet)/E(tau)=1

The shape is understandable
from 2-body kinematics

π
±
ντ

ρ
±
ντ

a±1 ντ

Eτ-jet/Eτ

x0 = 1.049± 0.003

σ = 0.072± 0.003

endpoint (fit):

smearing factor (fit):

E
ve

nt
s/

5
G

eV
/3

0
fb
−

1

Mτ̃ τ [GeV]

χ
0
1

χ
0
2

χ
0
3

χ
0
4

We select stau
which gives a smaller
value of the invariant mass.
(efficiency = 70%)

HERWIG+TAUOLA+AcerDET

10
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We can measure
mχ0

1
, mχ0

2

with an accuracy of O(5%)

We can clearly see
the edge structures.

main background is
wrong combination and 
tau mis-identification.

From mτ̃ , mχ0
1
, mχ0

2
all the parameters can be fixed.

Mτ̃ τ [GeV]

E
ve

nt
s/

5
G

eV
/3

0
fb
−

1

medge = 194± 2 [GeV]

σm = 3± 2 [GeV]

medge = 279± 3 [GeV]

σm = 13± 4 [GeV]

medge

σm = 1± 1 [GeV]
= 314± 1 [GeV]

We select stau
which gives a smaller
value of the invariant mass.
(efficiency = 70%)

HERWIG+TAUOLA+AcerDET
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∆µ ∼ 20 GeV, ∆M̄ ∼ 50 GeV, ∆ log10 Mmess ∼ 0.2

mA = 765± 40 GeV

all the specrum is now calculable. For example,

We can perform a non-trivial test of the model.

for [µ,Mmess, M̄ ] = [300, 1010, 900] GeV
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* There is a sweet spot in SUSY model space.

* stau NLSP has a good theoretical support.

* very different from neutralino LSP scenarios.

* many things needs to be understood for more precise 
  measurement of neutralino masses, such as calibration 
  of tau-jet momentum and physics of mis-identification.



               
Event selection

* Trigger (fast stau can be used as a trigger because it looks like a muon.)

* Two stau candidates

βγ < 2.2one of them should be this takes care most of the SM background

β′
− 0.05 < βmeas < β′

+ 0.05











β′
=

√

√

√

√

√

√

√

p2
meas

p2
meas

+ m2
τ̃











consistency with measured stau mass
(this is not very powerful if stau is light)

pT > 20 GeV

βγ > 0.4
to ensure the stau to reach to the muon system

* Meff > 800 GeV

* one tau-tagged jet ǫτ = 50%, R = 100we assumed

pT > 40 GeV

42,900/30fb^-1 2,014/30fb^-1

(1,529 with true tau and stau)


