GUT-less SUSY Phenomenology

Pearl Sandick University of Minnesota

Ellis, Olive & PS, Phys. Lett. B **642** (2006) 389 Ellis, Olive & PS, JHEP 06 (2007) 079

Why we like SUSY

- Solves the Naturalness Problem
- **Gauge coupling unification (GUTs)**
- Predicts a light Higgs boson

Wh t W D What We Do

- SUSY must be broken, so introduce soft SUSY-breaking parameters and assume high (GUT) scale values for them
- Evolve parameters down to weak scale using RGEs of low energy effective theory (MSSM)
- CMSSM: GUL-scale universality of soft breaking parameters **Some other scale?**

–5 inputs: m₀, m_{1/2}, A₀, tan(β), sign(μ)

GUT-l CMSSM less

• Assume unification of soft SUSY-breaking parameters at some M_{in} < M_{GUT}

–Constraints from colliders and cosmology:

$$
m_h > 114 \text{ GeV} \nm_{\chi^{\pm}} > 104 \text{ GeV} \nBR(b \rightarrow s \gamma) \text{ HFAG} \nBR(B_s \rightarrow \mu^{\pm} \mu^{-}) \text{ CDF} \n(g_{\mu} - 2)/2 \text{ g-2} \text{ collab}
$$

 $0.09 \leq \Omega_{\chi} h^2 \leq 0.12$

SUSY Dark Matter

• Solve Boltzmann rate equation:

$$
\frac{dn_{\chi}}{dt} = -3Hn_{\chi} - \langle \sigma v_{rel} \rangle \left[n_{\chi}^2 - (n_{\chi}^{eq})^2 \right]
$$

- S pecial Situations:
	- s channel poles
		- \bullet 2 m $_{\chi}$ \approx m $_{\rm A}$
	- thresholds
		- $\bullet~$ 2 m $_{\chi}$ \approx final state mass
	- Coannihilations
		- $\bullet~~{\sf m}_{\chi}\approx{\sf m}_{\sf other~sparticle}$

• First look at gaugino and scalar mass evolution.

Gauginos (1-Loop): $M_a(Q) = \frac{\alpha_a(Q)}{\alpha_a(M_{CUT})} M_a(M_{GUT})$ $M_a(Q) = \frac{\alpha_a(Q)}{\alpha_a(M_{in})} m_{1/2}$

> Running of gauge couplings identical to CMSSM case, so low scale gaugino masses are all closer to $\mathsf{m}_{\mathsf{1/2}}$ as M_{in} is M_{in} lowered.

• First look at gaugino and scalar mass evolution.

Scalars $(1 - \text{loop})$:
 $m_{0_i}^2(Q) = m_0^2 + C_i(Q, M_{GUT}) m_{1/2}^2$

 $m_{0_i}^2(Q) = m_0^2(M_{in}) + C_i(Q, M_{in})m_{1/2}^2$ $C_i \to 0$ as $M_{in} \to Q$

As $\mathsf{M}_{\mathsf{in}}\to$ low scale Q, expect low scale scalar masses to be closer to $\mathsf{m}_0.$

• Higgs mass parameter, μ (tree level):

$$
\mu^2 = \frac{m_1^2 - m_2^2 \tan^2 \beta}{\tan^2 \beta - 1} - \frac{M_Z^2}{2}
$$

As $M_{in} \rightarrow$ low scale Q, expect low scale scalar masses to be closer to $\mathsf{m}_0^{}$

μ² becomes generically smaller as M_{in} is lowered.

M E l ti ith M Mass Evolution with Min

 $\mathsf{m}_{\mathsf{1/2}}$ = 800 GeV m_0 = 1000 GeV $\mathsf{A}_0=\mathsf{0}$ tan(β) = 10 $\mu > 0$

How do we expect the constraints to evolve?

- $\bullet \;\; \mathsf{m}_{\mathsf{A}}$ decreases logarithmically with M_{in}
	- BR(b \rightarrow s γ) and BR(B_s \rightarrow μ^{+} μ--) at large tan(β) have important contributions from heavy Higgs exchange. These constraints will become more important as M_{in} is lowered.
- $\bullet\,$ \upmu decreases as M_{in} is lowered.
	- Expect that the unphysical region where $\mu^2 < 0$ encroaches farther into the plane.
	- $-$ When the LSP is bino-like, its mass *increases* as M_{in} is a lowered, so the forbidden stau LSP region encroaches into the plane. When the LSP becomes Higgsino-like, it's mass *decreases* as M_{in} is lowered, so the stau LSP boundary falls back down.

Neutralinos and Charginos

 $m_{1/2}$ = 1800 GeV m_0 = 1000 GeV $A_0 = 0$ $tan(\beta) = 10$ $\mu > 0$

Must properly include coannihilations involving all three lightest neutralinos!

Standard CMSSM

Standard CMSSM

Large $tan(\beta)$

Large $tan(\beta)$

Lowering M_{in} - tan(β) = 50

A0 [≠] **0**

- ${\sf A}_0$ > 0 \Rightarrow larger weakscale trilinear couplings, A_i
- \bullet Large loop corrections to μ depend on A_i , so μ is generically larger over the plane than when $A_0 = 0$ 0.
- \bullet Also see stop-LSP excluded region

Direct Detection: Neutralino-Nucleon Cross Sections

Direct Detection: Neutralino-Nucleon Cross Sections

C li onc usions

- Intermediate scale unification results in:
	- Rapid annihilation funnel even at low tan(β)
	- –- Merging of funnel and focus point
- Below some critical M_{in} (dependent on tan(β) and other factors), all or nearly all of the $(m_{1/2},$ $m₀$) plane is disfavored because the relic density of neutralinos is too low to fully account for the relic density of cold dark matter .

Neutralino-Nucleon Cross Sections

Neutralino-Nucleon Cross Sections

S ti l M Sparticle Masses

 $\mathsf{m}_{\mathsf{1/2}}$ = 800 GeV m_0 = 1000 GeV ${\sf A}_0 = {\sf 0}$ $\tan(\beta) = 10$ $\mu > 0$

Squarks

Lowering M_{in}

Pearl Sandick, UMN

2000

Lowering M_{in}

Lowering M_{in}

