GUT-less SUSY Phenomenology

Pearl Sandick University of Minnesota

Ellis, Olive & PS, Phys. Lett. B **642** (2006) 389 Ellis, Olive & PS, JHEP 06 (2007) 079

Why we like SUSY

- Solves the Naturalness Problem
- Gauge coupling unification (GUTs)
- Predicts a light Higgs boson

What We Do

- SUSY must be broken, so introduce soft SUSY-breaking parameters and assume high (GUT) scale values for them
- Evolve parameters down to weak scale using RGEs of low energy effective theory (MSSM)
- CMSSM: GUT-scale universality of soft breaking parameters other scale?

- 5 inputs: m_0 , $m_{1/2}$, A_0 , $tan(\beta)$, $sign(\mu)$

GUT-less CMSSM

 Assume unification of soft SUSY-breaking parameters at some M_{in} < M_{GUT}

Constraints from colliders and cosmology:

 $0.09 \leq \Omega_{\chi} h^2 \leq 0.12$

SUSY Dark Matter

Solve Boltzmann rate equation:

$$\frac{dn_{\chi}}{dt} = -3Hn_{\chi} - \langle \sigma v_{rel} \rangle \left[n_{\chi}^2 - (n_{\chi}^{eq})^2 \right]$$

- Special Situations:
 - s channel poles
 - 2 $m_{\chi} \approx m_A$
 - thresholds
 - 2 $m_{\chi} \approx$ final state mass
 - Coannihilations
 - $m_{\chi} \approx m_{other \ sparticle}$

 First look at gaugino and scalar mass evolution.

Gauginos (1-Loop): $M_a(Q) = \frac{\alpha_a(Q)}{\alpha_a(M_{GUT})} M_a(M_{GUT}) \longrightarrow M_a(Q) = \frac{\alpha_a(Q)}{\alpha_a(M_{in})} m_{1/2}$

Running of gauge couplings identical to CMSSM case, so low scale gaugino masses are all closer to $m_{1/2}$ as M_{in} is lowered.

 First look at gaugino and scalar mass evolution.

Scalars (1-Loop): $m_{0_i}^2(Q) = m_0^2 + C_i(Q, M_{GUT}) m_{1/2}^2$

 $m_{0_i}^2(Q) = m_0^2(M_{in}) + C_i(Q, M_{in}) m_{1/2}^2$ $C_i \to 0 \text{ as } M_{in} \to Q$

As $M_{in} \rightarrow$ low scale Q, expect low scale scalar masses to be closer to m_0 .

Higgs mass parameter, μ (tree level):

$$\mu^2 = \frac{m_1^2 - m_2^2 \tan^2 \beta}{\tan^2 \beta - 1} - \frac{M_Z^2}{2}$$

As $M_{in} \rightarrow$ low scale Q, expect low scale scalar masses to be closer to $m_{0.}$

 μ^2 becomes generically smaller as M_{in} is lowered.

Mass Evolution with M_{in}

 $m_{1/2} = 800 \text{ GeV}$ $m_0 = 1000 \text{ GeV}$ $A_0 = 0$ $tan(\beta) = 10$ $\mu > 0$

How do we expect the constraints to evolve?

- m_A decreases logarithmically with M_{in}
 - BR(b \rightarrow s γ) and BR(B_s $\rightarrow \mu^+\mu^-$) at large tan(β) have important contributions from heavy Higgs exchange. These constraints will become more important as M_{in} is lowered.
- μ decreases as M_{in} is lowered.
 - Expect that the unphysical region where $\mu^2 < 0$ encroaches farther into the plane.
 - When the LSP is bino-like, its mass *increases* as M_{in} is lowered, so the forbidden stau LSP region encroaches into the plane. When the LSP becomes Higgsino-like, it's mass *decreases* as M_{in} is lowered, so the stau LSP boundary falls back down.

Neutralinos and Charginos

 $m_{1/2} = 1800 \text{ GeV}$ $m_0 = 1000 \text{ GeV}$ $A_0 = 0$ $\tan(\beta) = 10$ $\mu > 0$

Must properly include coannihilations involving all three lightest neutralinos!

Standard CMSSM

Standard CMSSM

Large tan(β)

Large tan(β)

$A_0 \neq 0$

- A₀ > 0 ⇒ larger weakscale trilinear couplings,
 A:
- Large loop corrections to μ depend on A_i, so μ is generically larger over the plane than when A₀ = 0.
- Also see stop-LSP excluded region

Direct Detection: Neutralino-Nucleon Cross Sections

Direct Detection: Neutralino-Nucleon Cross Sections

Conclusions

- Intermediate scale unification results in:
 - Rapid annihilation funnel even at low $tan(\beta)$
 - Merging of funnel and focus point
- Below some critical M_{in} (dependent on tan(β) and other factors), all or nearly all of the $(m_{1/2}, m_0)$ plane is disfavored because the relic density of neutralinos is too low to fully account for the relic density of cold dark matter.

Neutralino-Nucleon Cross Sections

Neutralino-Nucleon Cross Sections

Sparticle Masses

 $m_{1/2} = 800 \text{ GeV}$ $m_0 = 1000 \text{ GeV}$ $A_0 = 0$ $tan(\beta) = 10$ $\mu > 0$

Squarks

Lowering M_{in}

Lowering M_{in}

Lowering M_{in}

Lowering M_{in} - Large tan(β)

Lowering M_{in} - Large tan(β)

Lowering M_{in} - Large tan(β)

Lowering M_{in} - Large tan(β)

