

Halo in CLIC

by Helmut Burkhardt

General definition and concepts

Core : particles $< n_{\sigma}$

Halo = Tail : particles > n_{σ}

in x,y, z transverse and longitudinal

Luminosity is from the core

for Gaussian beams, 99.2 % of the luminosity from $n_{\sigma} < 3$

see H.B., R.S. Intensity and Luminosity after Beam Scraping, CERN-AB-2004-054

Halo unwanted, to be removed by the collimation system

Halo estimates:

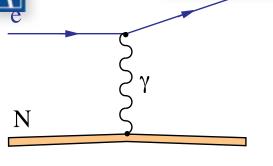
Done for normal conditions. Not dealing with failure scenarios

Halo sources

Known sources, 3 categories

- Particle processes: beam gas, (quasi) elastic and inelastic (Bremsstrahlung), thermal photon
- Optics related: mismatch, coupling, dispersion, non-linearities -- requires tracking for the "real" machine, tracking so far was with ideal machine
- Various: noise and vibrations, dark currents, wakefields -- currently not simulated for halo

Caution, by experience:


the actual amount of beam halo is very hard to predict and may vary considerably in a given machine.

HTGEN: halo/tail generation, developed as EuroTeV FP6 activity; fully integrated in PLACET applied to LINAC, BDS and drive beam; info and references on web page <u>HTGEN.html</u>

Beam gas elastic* scattering

small recoil correction - quasi elastic

total cross section
$$\sigma_{\rm el} = \frac{4\pi \, Z^2 \, r_e^2}{\gamma^2 \, \theta_{\rm min}^2}$$

Coulomb (Mott)

at constant normalized emittance $\epsilon_N = \gamma \epsilon$

$$\epsilon_N = \gamma \epsilon$$

scaling as $1/\gamma$ or 1/energybeginning of LINAC important

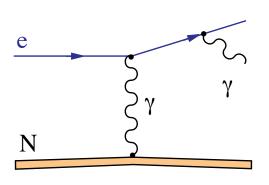
$$\sigma_{\rm el} = \frac{4\pi \, Z^2 r_e^2 \, \beta_y}{\epsilon_N \, \gamma}$$

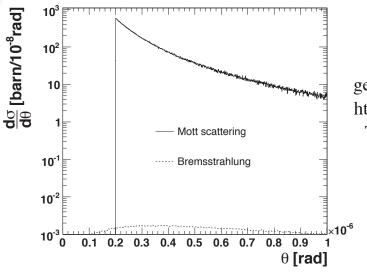
CLIC 2007 estimate. P = probability / m for scattering > 1 σ divergence

Location	Е	Gas	ρ	$\sigma_{ m el}$	P
	GeV		m^{-3}	Barn	m^{-1}
LINAC	9	CO	3.2×10^{14}	2.7×10^{7}	8.9×10^{-7}
BDS	1500	CO	3.2×10^{14}	1.7×10^{5}	1.1×10^{-8}

Probability 80x higher beginning of LINAC at 9 GeV compared to end at 1.5 TeV and BDS. Integrated over length using averaged β :

total LINAC Prob. $P = 1.16 \times 10^{-3}$, BDS $P = 6.0 \times 10^{-5}$ together 1.2×10^{-3} at 1σ


total LINAC Prob. $P = 1.29 \times 10^{-6}$, BDS $P = 6.7 \times 10^{-8}$ together 1.4×10^{-6} at 30 σ (loss)


placet-htgen simulation LINAC+CLIC fraction of 2×10⁻⁴ lost at spoilers (2007 estimate, 10nTorr)

Inelastic scattering

generated with htgen example TestProcess

scattering angle (of γ with respect to incident e)

$$f(\theta)d\theta \propto \frac{\theta \ d\theta}{(\theta^2 + \gamma^{-2})^2}$$
.

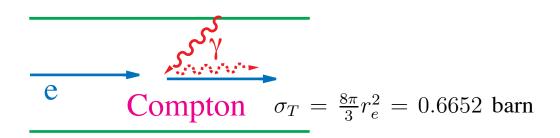
energy fraction k going to photon

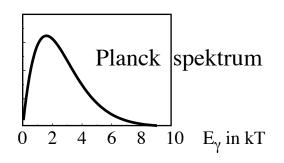
$$\frac{d\sigma}{dk} = \frac{A}{N_A X_0} \frac{1}{k} \left(\frac{4}{3} - \frac{4}{3}k + k^2 \right)$$

integrated for k > 1% , no E dependence $\sigma = 6.609$ Barn for N_2

$$\sigma_{\rm in} = \frac{A}{N_A X_0} \left(-\frac{4}{3} \log k_{\rm min} - \frac{5}{6} + \frac{4}{3} k_{\rm min} - \frac{k_{\rm min}^2}{2} \right)$$

Probability: 2.1×10^{-13} /m


summing up over both LINAC and BDS : $P = 5.0 \times 10^{-9}$


fully included in current HTGEN, minor contribution for CLIC

Scattering off thermal photons

mean energies:

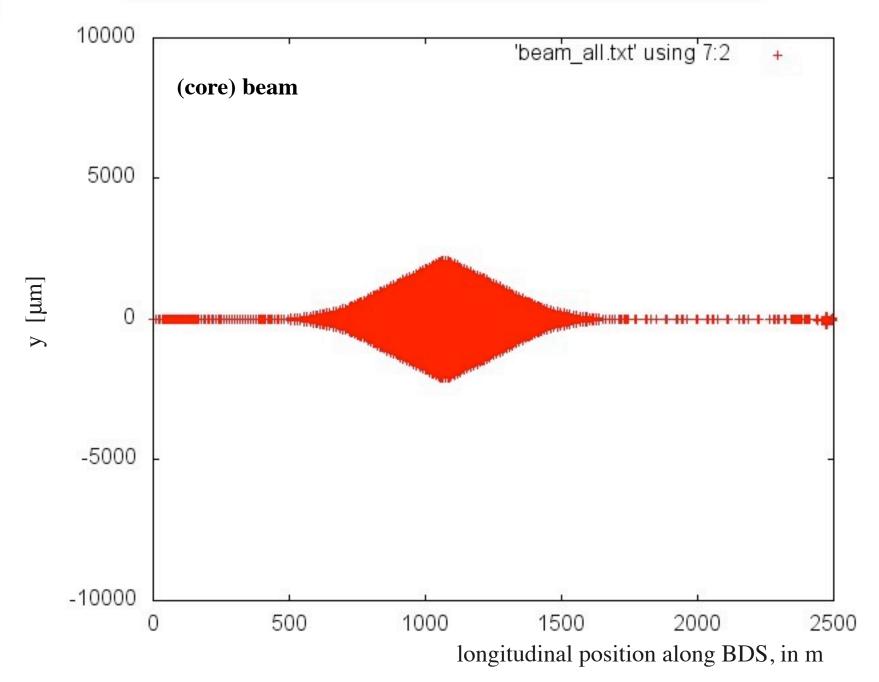
initial :
$$E_{\gamma}^{i} = 2.7 \text{ kT} = 0.07 \text{ eV}$$

e-rest:
$$E_{\gamma} = \gamma E_{\gamma}^{i} = 6.2 \text{ keV} \ll m_{e}$$

$$\rho_{\gamma} = 8\pi \left(\frac{kT}{hc}\right)^{3} \cdot \int_{0}^{\infty} \frac{x^{2}}{e^{x} - 1} dx$$
 5.32×10¹⁴/m³ at room temp.
2.404114

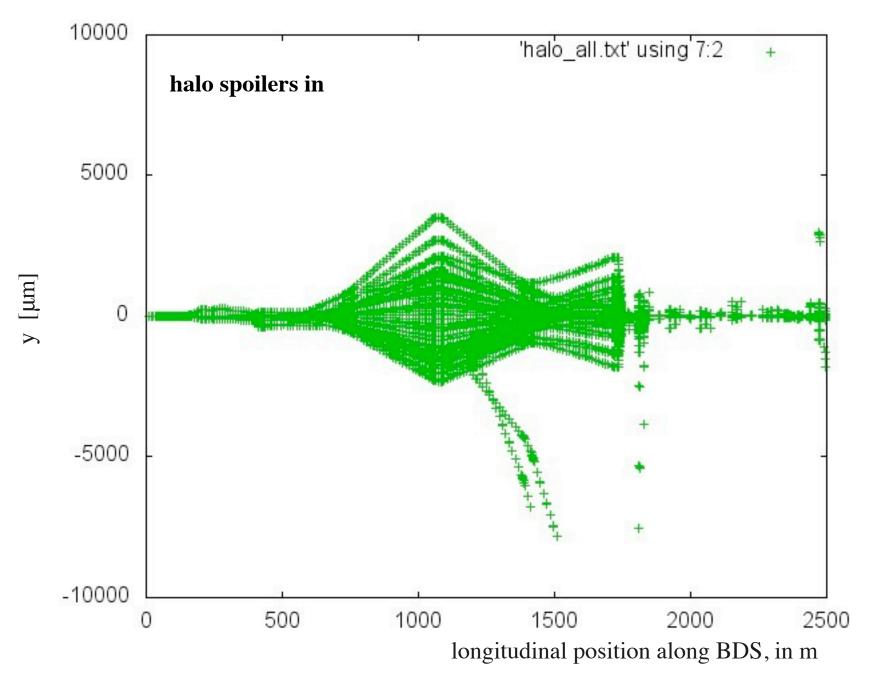
Lab:
$$E_{\gamma}' = \gamma E_{\gamma}^* \cong \gamma^2 E_{\gamma}^1$$

Lab: $E_{\gamma}' = \gamma E_{\gamma}'' \approx \gamma^2 E_{\gamma}^1$ 2.4% at 100 GeV, 5.3% at 250 GeV, 86% at 1.5 TeV

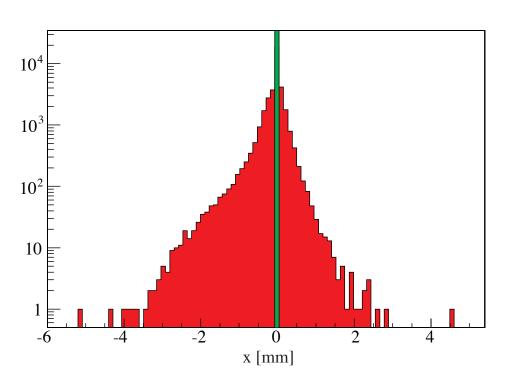

Was important for beam halo in LEP and the dominant single beam lifetime

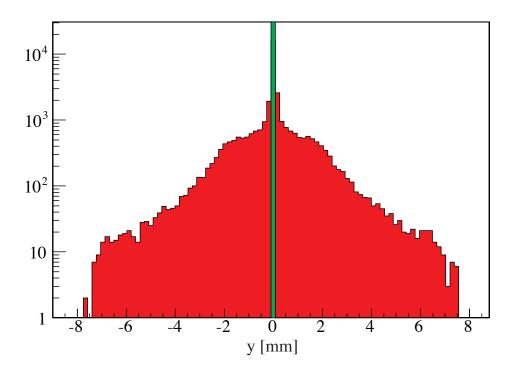
CLIC 1.5 TeV $P = 1.9 \times 10^{-14}$ /m for 2% energy loss. integrated over LINAC + BDS still below 10-9 not an issue

PLACET-HTGEN tracking



PLACET-HTGEN tracking


using apertures from v_09_04_01/bds.name.aperture.FixedSR.collaper



Projection at the 1st spoiler

HTGEN + PLACET, at XSP1, YSP1

Halo estimate, main beam, CLIC 1.5 TeV

2007 estimate, 10 nTorr

total LINAC Prob. $P = 1.16 \times 10^{-3}$, BDS $P = 6.0 \times 10^{-5}$ together 1.2×10⁻³ at 1 σ HTGEN simulation: losses ~ 2×10⁻⁴, mostly hitting the first spoiler

2011

several very significant changes compared to 2007

- significantly modified BDS optics / layout
- very good vacuum specified for the CDR (required for fast ion instability) unbaked vacuum ~1nTorr, 40% H₂, 40% H₂O, 10% CO, 10%CO₂

PLACET+HTGEN updated and kept working, used as input to BDSIM for muon background estimates;

Caution: no recent complete tracking campaign

Estimates relying on extrapolations and analytical estimates

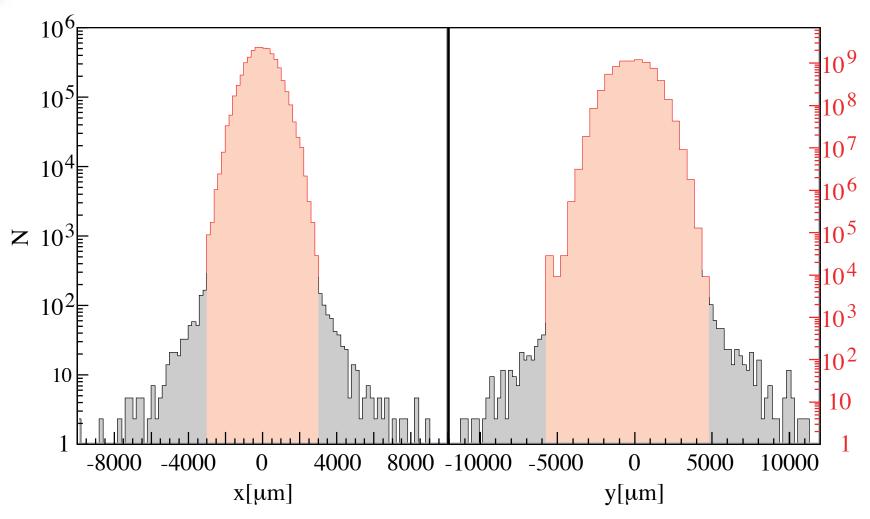
requirement from muon background halo losses on the level of 10-6

purely analytic, spoiler at 55 σ_y halo losses on the level of 10-7

with a significant contribution from the very high beta collimation region in the BDS

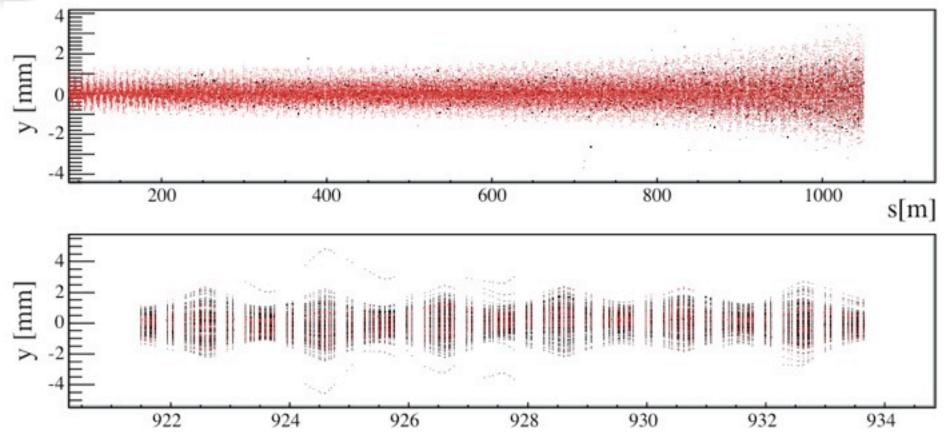
Halo estimate, CLIC drive beam

HTGEN extension to the drive beam non-trivial; only meaningful for full intensity


- drive beam using macroparticles / slices
- halo simulation, scattering processes done on single particle level possible by considering only collective effects from the core, acting on both core and tail neglecting collective effects of the halo

Subject of a diploma thesis by M. Fitterer
Short summary published as PAC 2009 paper <u>WE6PFP085</u>

Tracking results, CLIC drive beam



Transverse Beam profiles at the exit of the CLIC decelerator PLACET + HTGEN simulation

Tracking with halo, CLIC drive beam

Vertical beam position along a complete CLIC decelerator + zoom towards end Halo particles are shown in **black**, **beam** (**core**) **particles in red**

Main conclusion: fraction of halo particles lost at (the very large) aperture is small, of order 10^{-7} ; residual gas pressure 10 nTorr

Summary

CLIC as currently specified:

Very good vacuum; assuming an ideal machine, no failures

Expected halo losses from the known, unavoidable sources

(mostly quasi-elastic beam-gas scattering)

are low, typically on the $\sim 10^{-6}$ level

mostly localized to the collimation section

Reserve

Tail Population

Daniel Schulte, review of the CLIC detector / physics CDR, 18 October 2011, on indico

$$p \approx \sum \rho_i Z_i^2 \frac{4\pi r_e^2 mc^2}{n^2 \epsilon} \int_0^L \frac{\beta}{E} ds$$

Unbaked vacuum (1nTorr)

40% H₂, 40% H₂O, 10% CO, 10%CO₂

average Z²=53.6

density=3.2 10²²molecules/Torr

Hence:

$$p \approx 8.64 \times 10^{-17} \,\mathrm{m}^{-1} \frac{1}{n^2 \epsilon} \int_0^L \frac{\beta}{E} ds$$

Tightest constraint is 55 σ_v :

Main linac
$$\int_0^L \frac{\beta}{E} ds \approx 1000 \, \frac{\mathrm{m}^2}{\mathrm{GeV}} \qquad \text{p=1.43 } 10^{\text{-9}}$$

$$\int_0^L \frac{\beta_x}{E} ds \approx 832 \, \frac{\mathrm{m}^2}{\mathrm{GeV}} \qquad \text{p=1.19 } 10^{\text{-9}} \qquad \text{For both sides together: } \text{~530 particle/bunch}$$

BDS vertical
$$\int_0^L \frac{\beta_y}{E} ds pprox 48667 \, rac{\mathrm{m}^2}{\mathrm{GeV}}$$
 p=6.95 10-8