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Fluid Dynamics / Hydrodynamics — what, where, why

Kinetic/Transport Theory: Microscopic theory.

Fluid Dynamics: Effective theory that describes the slow,
long-wavelength motion of a fluid close to equilibrium.

A set of coupled partial differential equations for n, ǫ, P , uµ,
dissipative fluxes. In addition: transport coefficients & relaxation
times also occur.
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Hydrodynamics in HE Heavy-Ion Collisions

Calc. of pT spectra of hadrons & anisotropic flows vn.

Also calc. of jet quenching, J/ψ melting, thermal γ, ℓ2, etc.
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Zeroth-, First-, Second-Order Hydrodynamics

The theory is formulated as an order-by-order expansion in gradients
of hydrodynamic velocity uµ.

Zeroth order: Ideal hydrodynamics.
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Rajeev Bhalerao New Relativistic ... Slide 5 of 26



Zeroth-, First-, Second-Order Hydrodynamics

The theory is formulated as an order-by-order expansion in gradients
of hydrodynamic velocity uµ.

Zeroth order: Ideal hydrodynamics.
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Second order: Two different approaches

Entropy considerations : Captures some of the allowed terms in
evolution equations of dissipative quantities
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Motivation

Why do the traditional approaches not generate all the allowed
terms?

The second-order viscous hydrodynamics is quite successful in
explaining the spectra and azimuthal anisotropy of particles produced
in heavy-ion collisions. However, in the 1-D Bjorken case
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Ideal and Dissipative Hydrodynamics

Ideal Dissipative

Tµν = ǫuµuν − P∆µν Tµν = ǫuµuν − (P + Π)∆µν + πµν

Nµ = nuµ Nµ = nuµ + nµ

Unknowns: ǫ, P , n, uµ
︸ ︷︷ ︸

1+1+ 1+ 3

= 6 ǫ, P , n, uµ, Π, πµν , nµ
︸ ︷︷ ︸

1+1+ 1 + 3 + 1 + 5 + 3

= 15

Equations: ∂µT
µν = 0, ∂µN

µ = 0, EOS
︸ ︷︷ ︸

4 + 1 + 1

= 6

Closed set of equations 9 more equations required

∆µν = gµν − uµuν is orthogonal to uµ (uµ∆
µν = 0 ; uµuµ = 1)
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Question:

How to derive the extra nine equations which

would give us a closed set of equations?

Boltzmann equation provides a way.
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Boltzmann Equation

Boltzmann equation:

pµ∂µf (x , p) = C [f ].

The collision term C [f ] for 2↔ 2 elastic collisions:

C [f ] =
1

2

∫

dp′dk dk ′ Wpp′→kk′

(

fk fk′ f̃p f̃p′ − fpfp′ f̃k f̃k′
)

,

where Wpp′→kk′ : transition matrix element, fk ≡ f (x , k), f̃ ≡ 1− rf ,
r = 0 (MB), ±1 (FD/BE).
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Properties of the Collision Term

Should be consistent with the second law of thermodynamics

Zeroth moment of the Boltzmann equation: current conservation

∂µN
µ = 0 =⇒ ∂µ

∫

dp pµf =

∫

dp C [f ] = 0
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Local Collision Term

Boltzmann equation:

pµ∂µf (x , p) = C [f ].

The collision term C [f ] for 2↔ 2 elastic collisions:

C [f ] =
1

2

∫

dp′dk dk ′ Wpp′→kk′

(

fk fk′ f̃p f̃p′ − fpfp′ f̃k f̃k′
)

,

where Wpp′→kk′ : transition matrix element, fk ≡ f (x , k), f̃ ≡ 1− rf ,
r = 0 (MB), ±1 (FD/BE).

Probability of the process (kk ′ → pp′) ∝ fk fk′ f̃p f̃p′ ← occurs at x

Probability of the process (pp′ → kk ′) ∝ fpfp′ f̃k f̃k′ ← also occurs at x

Thus C [f ] is a purely local functional of f .
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Despite the long history of the Boltzmann

equation, a non-local collision term, to our

knowledge, has never been used to derive

hydrodynamic equations.
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From Israel-Stewart’s classic paper [1979]

• Note the words hope and assumption.
• The assumption of the local collision term is questionable.
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Infinitesimal Volume Element in a Fluid

Landau-Lifshitz, Fluid Mechanics, page 1, §1, para 1:

“Any small volume element in the fluid is always supposed so large
that it still contains a very great number of molecules. Accordingly,
when we speak of infinitely small elements of volume, we shall always
mean those which are ‘physically’ infinitely small, i.e. very small
compared with the volume of the body under consideration, but large
compared with the distances between the molecules”.
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Assumption that the processes (kk ′ → pp′) and (pp′ → kk ′) occur at the
same space-time point has been relaxed to include a separation ξ.
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Generalization of the Collision Term

If gradients of f (x , p) are allowed in the collision term, then

C [f ]gen = C [f ] + ∂µ (A
µf ) + ∂µ∂ν (B

µν f ) + · · · ,

where Aµ and Bµν are tensor coefficients in the non-local terms.

This form can also be derived explicitly for 2↔ 2 elastic collisions:
Recall

C [f ] =
1

2

∫

dp′dk dk ′ Wpp′→kk′

(

fk fk′ f̃p f̃p′ − fpfp′ f̃k f̃k′
)

,

where both the terms are evaluated at x .
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If the process kk ′ → pp′ occurs at (x) then realistically the reverse
process pp′ → kk ′ should occur at some other point (x − ξ).
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Generalization of the Collision Term (contd.)

Collision term with non-local effects

C [f ]gen =
1

2

∫

dp′dk dk ′ Wpp′→kk′

(

fk fk′ f̃p f̃p′ |x − fpfp′ f̃k f̃k′ |x−ξ

)

.

Taylor expansion of the second term around x gives

C [f ]gen = C [f ] + ∂µ (A
µf ) + ∂µ∂ν (B

µν f ) ,

where

Aµ =
1

2

∫

dp′dk dk ′ ξµWpp′→kk′ fp′ f̃k f̃k′ ,

Bµν = −1

4

∫

dp′dk dk ′ ξµξνWpp′→kk′ fp′ f̃k f̃k′ .
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Tensor Decomposition and Constraints on Collision Term

Aµ and Bµν are tensor-decomposed into available tensor degrees of
freedom pµ and gµν as

Aµ = apµ ; Bµν = b1g
µν + b2p

µpν

a, b1, b2 constrained by current and energy-momentum conservation,
and positive entropy divergence.
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Aµ and Bµν are tensor-decomposed into available tensor degrees of
freedom pµ and gµν as

Aµ = apµ ; Bµν = b1g
µν + b2p

µpν

a, b1, b2 constrained by current and energy-momentum conservation,
and positive entropy divergence.

ξµ is arbitrary: Conservation equations must be satisfied
order-by-order in ξ. The constraints on a, b1, b2 are

∂µa = 0; ∂2 (b1a00) + ∂µ∂ν (b2I
µν) = 0;

uα∂µ∂ν (b2I
µνα) + uα∂

2 (b1nu
α) = 0; |a| ≤ 1

where a00 =
∫
dpf0 and Iµ1µ2···µn =

∫
dp pµ1pµ2 · · · pµn f0.
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Deriving Evolution Equations for Dissipative Quantities

Evolution equations for dissipative quantities are obtained from the
second moment of the improved Boltzmann equation:

∫

dp pαpβpγ∂γ f =

∫

dp pαpβ
[
C [f ] + pγ∂γ(af ) + ∂2(b1f0) + (p · ∂)2(b2f0)

]

For system close to equilibrium: f = f0 + δf , and to second order in
gradients

C [f ]gen = C [f ] + ∂µ (A
µf ) + ∂µ∂ν (B

µνf0) ; f0 =
1

exp(βu · p − α) + r

To proceed further, Grad’s 14-moment method is used:

f = f0 + f0f̃0

(

λΠΠ+ λnnαp
α + λππαβp

αpβ
)

Introduce first-order shear tensor σµν = ∇〈µuν〉, vorticity
ωµν = (∇µuν −∇νuµ)/2 and expansion scalar θ = ∂ · u.
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Evolution equations (Note the New Terms)

Π = ãΠNS − βΠ̇τΠΠ̇ + τΠnn · u̇ − lΠn∂ · n − δΠΠΠθ + λΠnn · ∇α
+ λΠππµνσ

µν + ΛΠu̇u̇ · u̇ + ΛΠωωµνω
νµ + (8 terms),

nµ = ãn
µ
NS − βṅτnṅ〈µ〉 + λnnnνω

νµ − δnnnµθ + lnΠ∇µΠ− lnπ∆
µν∂γπ

γ
ν

− τnΠΠu̇µ − τnππµν u̇ν + λnπnνπ
µν + λnΠΠn

µ + Λnu̇ω
µν u̇ν

+ Λnω∆
µ
ν∂γω

γν + (9 terms),

πµν = ãπµνNS − βπ̇τππ̇〈µν〉 + τπnn
〈µu̇ν〉 + lπn∇〈µnν〉 + λπππ

〈µ
ρ ω

ν〉ρ

− λπnn〈µ∇ν〉α− τπππ〈µρ σν〉ρ − δπππµνθ + Λπu̇u̇
〈µu̇ν〉

+ Λπωω
〈µ
ρ ω

ν〉ρ + χ1ḃ2π
µν + χ2u̇

〈µ∇ν〉b2 + χ3∇〈µ∇ν〉b2,

where ã = (1− a), Ẋ = uµ∂µX and “8 terms” (“9 terms”) involve
second-order, scalar (vector) combinations of derivatives of b1, b2.
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Bjorken flow [J. D. Bjorken, PRD, 27, 140 (1983)]

Boost invariance: v z = z/t. Transverse dynamics neglected:
v x = 0 = v y .

Milne coordinates: proper time τ =
√
t2 − z2, spacetime rapidity

η = tanh−1(z/t). Metric gµν = diag(1,−1,−1,−τ2).
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Bjorken flow [J. D. Bjorken, PRD, 27, 140 (1983)]

Boost invariance: v z = z/t. Transverse dynamics neglected:
v x = 0 = v y .

Milne coordinates: proper time τ =
√
t2 − z2, spacetime rapidity

η = tanh−1(z/t). Metric gµν = diag(1,−1,−1,−τ2).

Boost invariance for hydro translates into

uz =
z

τ
; uη = −ut sinh η

τ
+ uz

cosh η

τ
= 0

Hence uµ = (1, 0, 0, 0) and as a consequence ǫ, P , a, b1, b2, u
µ and

πµν are all independent of η.
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Hence uµ = (1, 0, 0, 0) and as a consequence ǫ, P , a, b1, b2, u
µ and

πµν are all independent of η.

Stress energy tensor: Tµν = diag(ǫ, PT , PT , PL)

PT = P +Φ/2 ; PL = P − Φ.
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Evolution Equations in Bjorken Model

With π ≡ Φ = −τ2πηη , the shear evolution equation is

π

τπ
+ βπ̇

dπ

dτ
= βπ

4

3τ
− λπ

τ
− ψπdb2

dτ

where

βπ̇= ã +
b2(ǫ0 + P0)

ãβη
; βπ =

2

3
ãP0

ψ =
11(ǫ0 + P0)

6ãβη
; λ=2ã − b1β

2 − 20b2
6ãβη

(ǫ0 + P0).

Above equation for π along with ∂µT
µν = 0 and the constraint

equations for a, b1, b2 are solved simultaneously.
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; λ=2ã − b1β

2 − 20b2
6ãβη

(ǫ0 + P0).

Above equation for π along with ∂µT
µν = 0 and the constraint

equations for a, b1, b2 are solved simultaneously.

Initial conditions: T = 360 MeV (RHIC) or 500 MeV (LHC), shear
pressure π = 0 (isotropic) or π = πNS = 4η/(3τ0) (anisotropic).
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ãβη
; βπ =

2

3
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6ãβη
; λ=2ã − b1β
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Evolution of various quantities and PL/PT
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b1, b2 behave in a regular fashion Non-local effects are important
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Hydro with non-local effects can match transport
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Summary

C [f ] in Boltzmann equation generalized to include non-local effects.

Non-locality parameterized and constrained from underlying physics.

Formulated complete second-order dissipative hydrodynamics from
Boltzmann equation with the generalized collision term.

The formulation captures all the second-order terms that are allowed
and the coefficients of the existing terms are also modified.

Evolution of non-local parameters shows regular behaviour and
non-local effects are important.

Even the (first-order) Navier-Stokes equation receives a small
correction.
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THANK YOU
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