Summary and Outlook

Modeling the Impact Parameter Dependence of the nPDFs With EKS98 and EPS09 Global Fits Heavy Ion Collisions in the LHC Era

Ilkka Helenius

In collaboration with Kari J. Eskola, Heli Honkanen, and Carlos Salgado

JHEP 07 (2012) 073 [arxiv:1205.5359]

University of Jyväskylä Department of Physics

17.7.2012

	Applications	Summary and Outlook
Outline		

- Nuclear Parton Distribution Functions
- Nuclear Geometry in Heavy Ion Collisions

Framework

- Model Framework
- Fitting Procedure
- Outcome

3 Applications

- parton production
- π^0 production
- Inclusive γ production
- 4 Summary and Outlook

Framework

Applications

Summary and Outlook

Determination of the nPDFs

Collinear factorization framework:

$$\mathrm{d}\sigma^{AB\to k+X} = \sum_{i,j,X'} f_i^A(x,Q^2) \otimes f_j^B(x,Q^2) \otimes \mathrm{d}\hat{\sigma}^{ij\to k+X'} + \mathcal{O}(1/Q^2)$$

• f_i^A 's determined via global analysis:

• So far globally analysed f_i^A 's spatially independent

Framework

Applications

Summary and Outlook

Nuclear Modification to PDFs

• nPDFs often decomposed as

 $f_i^A(x,Q^2) = R_i^A(x,Q^2) \cdot f_i^N(x,Q^2),$

where $f_i^N(x,Q^2)$ free nucleon PDF (e.g. CTEQ)

- We consider two globally fitted $R_i^A(x,Q^2)$'s:
 - EKS98 (LO DGLAP evolution) [Eur. Phys. J. C9 (1999) 61-68]
 - EPS09 (LO and NLO DGLAP evolution with uncertainties) [JHEP 04 (2009) 065]

Introduction	and	Motivation
0000		

Framework

Applications

Summary and Outlook

Nuclear Geometry

Production of k at impact parameter \mathbf{b}

$$\mathrm{d}N^{AB\to k+X}(\mathbf{b}) = T_{AB}(\mathbf{b})\sum_{i,j} f_i^A \otimes f_j^B \otimes \mathrm{d}\hat{\sigma}^{ij\to k+X}$$

Nuclear overlap function

Amount of interacting matter at impact parameter b.

$$T_{AB}(\mathbf{b}) = \int \mathrm{d}^2 \mathbf{s} \, T_A(\mathbf{s_1}) T_B(\mathbf{s_2}),$$

where

$$s_1 = s + b/2$$
 $s_2 = s - b/2$

Framework

Applications

Summary and Outlook

Nuclear Geometry

Amount of nuclear matter in beam direction

Framework

Applications

Summary and Outlook

Model Framework

Nuclear modifications with spatial dependence

• We replace

$$R^A_i(x,Q^2) \to r^A_i(x,Q^2,\mathbf{s}),$$

where $\mathbf{s}=$ the transverse position of the nucleon

• Definition $R_i^A(x,Q^2) \equiv rac{1}{A}\int \mathrm{d}^2\mathbf{s}\, T_A(\mathbf{s})r_i^A(x,Q^2,\mathbf{s}),$

where $R_i^A(x,Q^2)$ from EKS98 or EPS09 (=data!)

 \bullet Assumption: spatial dependence related to $T_A(\mathbf{s})$

 $r_A(x, Q^2, \mathbf{s}) = 1 + c_1(x, Q^2)[T_A(\mathbf{s})] + c_2(x, Q^2)[T_A(\mathbf{s})]^2$ $+ c_3(x, Q^2)[T_A(\mathbf{s})]^3 + c_4(x, Q^2)[T_A(\mathbf{s})]^4$

Important: No A dependence in the fit parameters $c_j(x, Q^2)$ (unlike some earlier analyses with only one fit parameter)

Framework

Applications

Summary and Outlook

Fitting Procedure

Parameters $c_j(x,Q^2)$ obtained by minimizing the χ^2

$$\chi_i^2(x,Q^2) = \sum_A \left[\frac{R_i^A(x,Q^2) - \frac{1}{A} \int d^2 \mathbf{s} T_A(\mathbf{s}) r_i^A(x,Q^2,\mathbf{s})}{W_i^A(x,Q^2)} \right]^2$$

Framework

Applications

Summary and Outlook

Spatial Dependence of Nuclear Modifications

$$r_i^A(x,Q^2,\mathbf{s}) = 1 + \sum\limits_{j=1}^4 c_j^i(x,Q^2) [T_A(\mathbf{s})]^j$$
 ($A=208$, EPS09sNLO)

Observations

• The shape in x is similar to $R_i^A(x,Q^2)$

• small s:

$$|1 - r_i^A(x, Q^2, \mathbf{s})|$$

 $> |1 - R_i^A(x, Q^2)|$

• large s: $r_i^A(x,Q^2,\mathbf{s})\approx 1$

	Applications ●00000000	Summary and Outlook 0
Observables		

Nuclear Modification Factor

$$R_{AB}^{k}(b_{1},b_{2}) = \frac{\left\langle \frac{\mathrm{d}^{2}N_{AB}^{k}}{\mathrm{d}p_{T}\mathrm{d}y} \right\rangle_{b_{1},b_{2}}}{\frac{\langle N_{bin} \rangle_{b_{1},b_{2}}}{\sigma_{inel}^{NN}} \frac{\mathrm{d}^{2}\sigma_{pp}^{k}}{\mathrm{d}p_{T}\mathrm{d}y}} = \frac{\int_{b_{1}}^{b_{2}} \mathrm{d}^{2}\mathbf{b} \frac{\mathrm{d}^{2}N_{AB}^{k}(\mathbf{b})}{\mathrm{d}p_{T}\mathrm{d}y}}{\int_{b_{1}}^{b_{2}} \mathrm{d}^{2}\mathbf{b} T_{AB}(\mathbf{b}) \frac{\mathrm{d}^{2}\sigma_{pp}^{k}}{\mathrm{d}p_{T}\mathrm{d}y}}$$

The Central-to-Peripheral Ratio

$$R_{CP}^{k} = \frac{\left\langle \frac{\mathrm{d}^{2} N_{AB}^{k}}{\mathrm{d} p_{T} \mathrm{d} y} \right\rangle \frac{1}{\langle N_{bin} \rangle}(C)}{\left\langle \frac{\mathrm{d}^{2} N_{AB}^{k}}{\mathrm{d} p_{T} \mathrm{d} y} \right\rangle \frac{1}{\langle N_{bin} \rangle}(P)} = \frac{\int_{b_{1}^{c}}^{b_{2}^{c}} \mathrm{d}^{2} \mathbf{b} \frac{\mathrm{d}^{2} N_{AB}^{k}(\mathbf{b})}{\mathrm{d} p_{T} \mathrm{d} y} \Big/ \int_{b_{1}^{c}}^{b_{2}^{c}} \mathrm{d}^{2} \mathbf{b} T_{AB}(\mathbf{b})}{\int_{b_{1}^{p}}^{b_{2}^{p}} \mathrm{d}^{2} \mathbf{b} \frac{\mathrm{d}^{2} N_{AB}^{k}(\mathbf{b})}{\mathrm{d} p_{T} \mathrm{d} y} \Big/ \int_{b_{1}^{p}}^{b_{2}^{p}} \mathrm{d}^{2} \mathbf{b} T_{AB}(\mathbf{b})}$$

 \bullet Impact parameter values b_1 and b_2 for given centrality class from optical Glauber model

Framework

Applications

Summary and Outlook

Optical Glauber model

Centrality classes

• Probability for inelastic collision

$$p_{inel}^{AB}(\mathbf{b}) \approx 1 - \mathrm{e}^{-T_{AB}(\mathbf{b})\sigma_{inel}^{NN}}$$

Inelastic cross section

$$\sigma_{inel}^{AB}(b_1, b_2) = \int_{b_1}^{b_2} \mathrm{d}^2 \mathbf{b} \, p_{inel}^{AB}(\mathbf{b})$$

Impact parameters from

$$(c_1 - c_2)\% = \frac{\sigma_{inel}^{AB}(b_1, b_2)}{\sigma_{inel}^{AB}(0, \infty)}$$

Framework

Applications

Summary and Outlook

Calculation of $dN_{AB}^k(\mathbf{b})$

Spatially averaged nPDFs

$$\mathrm{d}N^{AB\to k+X}(\mathbf{b}) = T_{AB}(\mathbf{b}) \sum_{i,j} R_i^A f_i^N \otimes R_j^B f_j^N \otimes \mathrm{d}\hat{\sigma}^{ij\to k+X}$$

Spatially dependent nPDFs

$$dN^{AB \to k+X}(\mathbf{b}) = \sum_{n,m} \int d^2 \mathbf{s} \left[T_A(\mathbf{s} + \mathbf{b}/2) \right]^{n+1} \left[T_B(\mathbf{s} - \mathbf{b}/2) \right]^{m+1}$$
$$\sum_{i,j} c_i^n f_i^N \otimes c_j^m f_j^N \otimes d\hat{\sigma}^{ij \to k+X}$$

 \bullet We provide the coefficients $c_i^n(x,Q^2)$ in EKS98s and EPS09s ${\rm codes}^1$

¹https://www.jyu.fi/fysiikka/en/research/highenergy/urhic/nPDFs

Framework

Applications

Summary and Outlook

Pb+Pb collisions at LHC

 R_{AA} and R_{CP} for partonic-jet production in LO; Baseline for E-loss

Framework

Applications

Summary and Outlook

d+Au collisions at RHIC

Min. bias R_{dAu} for π^0 production at y = 0 in NLO (calculated with INCNLO)

• Data used in EPS09 global fit

Framework

Applications

Summary and Outlook

d+Au collisions at RHIC

 $R_{\rm dAu}$ for π^0 production at y = 0 in different centrality classes in NLO (calculated with INCNLO)

Framework

Applications

Summary and Outlook

p+Pb collisions at LHC

 $R_{\rm pPb}$ for π^0 production at y=0 in different centrality classes in NLO (calculated with INCNLO)

Framework

Applications

Summary and Outlook

d+Au collisions at RHIC

Min. bias $R_{\rm dAu}$ for inclusive γ production at mid-rapidity

Framework

Applications

Summary and Outlook

d+Au collisions at RHIC

 $R_{\rm dAu}$ for inclusive γ production at y = 0 in different centrality classes in NLO (preliminary, calculated with INCNLO)

Framework

Applications

Summary and Outlook

Summary & Outlook

We have

- Determined the spatial dependence of nuclear modifications using
 - The A dependence of the EKS98/EPS09 (= data!)
 - The power series of the $T_A(\mathbf{s})$
- \bullet Published routines EPS09s and EKS98s for $r^A_i(x,Q^2,{\bf s})$
 - ⇒ Nuclear modifications of any hard process in any centrality class can now be computed consistently with global fits!
- Calculated R_{AA}^{1jet} , R_{CP}^{1jet} , $R_{dAu}^{\pi^0}$, $R_{pPb}^{\pi^0}$ and R_{dAu}^{γ} in different centrality classes

We will

- $\bullet\,$ Calculate also $R_{\rm pPb}^{\gamma}$ in different centrality classes
- Consider also implementation to MC-calculations

Backup

Heavy Ion Collisions in the LHC Era 17.7.2012

I. Helenius (JYFL)

d+Au collisions at RHIC

 $R_{\rm dAu}$ for π^0 production at y=3 in different centrality classes in NLO (calculated with INCNLO)

 $R_{\rm pPb}$ for π^0 production in different centrality classes at y=3 in LO

$R_{\rm pPb}$ for π^0 production in minimum bias collisions at y=0

 $\Rightarrow\,$ Some difference between LO and NLO results

$\overline{\langle N_{bin} \rangle}$ for p+Pb and d+Au

p+Pb with
$$\sigma_{inel}^{NN} = 70 \text{ mb} (\sqrt{s} = 5.0 \text{ TeV})$$

	b_1 [fm]	$b_2 [\mathrm{fm}]$	$\langle N_{bin} \rangle$
0-20%	0.0	3.471	14.24
20 - 40%	3.471	4.908	11.41
40-60%	4.908	6.012	7.663
60-80%	6.012	6.986	3.680

d+Au with $\sigma_{inel}^{NN} = 42 \text{ mb} (\sqrt{s} = 200.0 \text{ GeV})$

	b_1 [fm]	b_2 [fm]	$\langle N_{bin} \rangle$
0 - 20%	0.0	3.798	15.57
20 - 40%	3.798	5.371	10.95
40 - 60%	5.371	6.583	6.013
60-88%	6.583	8.336	2.353

Fitted $\overline{R(x,Q^2)}$ vs. old $\overline{R(x,Q^2)}$

Fitted $R(x,Q^2)$ vs. old $R(x,Q^2)$

Spatial Dependence of Nuclear Modifications

Comparision With Other Models

Nuclear modifications with spatial dependence

- 1-parameter fit (R. Vogt et al.) [Phys. Rev. C61 044904, 2000]
- FGS10 (Frankfurt, Guzey, Strikman) [Phys.Rept. 512 255-393,2012]

A-dependent modification

Thickness function

• If the Modification of the form $r_A(x, Q^2, s) = 1 + c(x, Q^2)[T_A(s)]$

[Phys.Rev., C61:044904, 2000]

• The parameter $c(x,Q^2)$ from the normalization condition

$$c(x,Q^2) = rac{A(R_i^A(x,Q^2)-1)}{\int \mathrm{d}^2 \mathbf{s} \left[T_A(\mathbf{s})\right]^2}$$

\Rightarrow Strong A dependence of $c(x, Q^2)!$

The s dependence not entirely decomposed from $c(x, Q^2)$.

A+B Collisions

• The 1-jet distribution for a centrality class with $b \in [b_1, b_2]$ calculated from

$$\left\langle \frac{\mathrm{d}^2 N_{AB}^{\mathrm{1jet}}}{\mathrm{d} p_T \mathrm{d} y} \right\rangle_{b_1, b_2} = \frac{\int_{b_1}^{b_2} \mathrm{d}^2 \mathbf{b} \frac{\mathrm{d}^2 N_{AB}^{\mathrm{1jet}}(\mathbf{b})}{\mathrm{d} p_T \mathrm{d} y}}{\int_{b_1}^{b_2} \mathrm{d}^2 \mathbf{b} \, p_{AB}^{inel}(\mathbf{b})}$$

• $p_{AB}^{inel}(\mathbf{b}) = 1 - e^{-T_{AB}(\mathbf{b})\sigma_{inel}^{NN}}$ (optical Glauber model)

Parameters from optical Glauber model

	central = 0 - 5%		peripheral = 60 - 80%		-80%	
	b_1 [fm]	$b_2 [\mathrm{fm}]$	$\langle N_{bin} \rangle$	$b_1 [\mathrm{fm}]$	$b_2 [\mathrm{fm}]$	$\langle N_{bin} \rangle$
RHIC	0.0	3.355	1083	11.62	13.42	15.11
LHC	0.0	3.478	1772	12.05	13.91	19.08

• RHIC:
$$\sigma_{inel}^{NN} = 42 \text{ mb}$$

• LHC: $\sigma_{inel}^{NN} = 64 \text{ mb}$