Measurement of electroweak boson production in pp and PbPb collisions with CMS

Lamia Benhabib LLR-Ecole Polytechnique

-Heavy Ion Collisions in the LHC Era-Quy Nhon, Vietnam. July 16, to July 20, 2012

July 17, 2012

Outlook

- Introduction
- CMS
- Z and W results in pp and PbPb collisions

```
• 2010 PbPb data :
```

•
$$\int Ldt \sim 7 \ \mu b^{-1}$$
 at $\sqrt{s} = 2.76 \, TeV$

• 2011 pp data :

•
$$\int Ldt \sim 18.7 \text{ pb}^{-1}$$
 at $\sqrt{s} = 8 \text{ TeV}$

•
$$\int Ldt \sim 840 \text{ pb}^{-1}$$
 at $\sqrt{s} = 7 \text{ TeV}$

•
$$\int Ldt \sim 4.5 \text{ fb}^{-1}$$
 at $\sqrt{s} = 7 \text{ TeV}$

•
$$\int Ldt \sim 231 \text{ nb}^{-1}$$
 at $\sqrt{s} = 2.76 \text{ TeV}$

Conclusion

Motivation

• in PbPb

- LHC allowed first observation and measurement of Z and W bosons in PbPb collisions
- W and Z signals are essentially predicted to be unaffected by the strongly interacting medium produced in PbPb collisions
- ullet They are studied through their leptonic decay Z $ightarrow \mu^+$ μ^- , $W^\pm
 ightarrow \mu^\pm$ u
- Precise measurement of W and Z production in heavy ion can help to constrain nuclear PDFs

in pp

- Precision on Standard Model measurements at TeV scale
- Background for new physics searches and Higgs studies
- Constrain proton PDFs
- Calibration of the detectors, improve lepton reconstruction

Introduction

$extsf{Z} ightarrow \mu^+ \ \mu^-$ and $extsf{Z} ightarrow e^+ \ e^-$ candidates

- 39 Z candidates counted in a di-muon invariant mass window $[60.120 \text{ GeV}/c^2]$
- No background just with loose quality cuts, only one same-sign event in $[30,120~{\rm GeV}/c^2]$
- Z mass resolution comparable to p-p

- Z production scales with T_{AB}, i.e. with the number of NN collisions
- Comparison to different theoretical predictions

• POWHEG: pp
$$\rightarrow$$
 Z $\rightarrow \mu^+ \mu^-$

- Paukkunen: shadowing + isospin
- Neufeld: isospin + energy loss
- Uncertainties: 16% statistical, 14% systematic

$$_{\bullet}$$
 Assuming from POWHEG $\frac{d\sigma_{pp}}{dy}=59.6~pb$ in $|y|<2$

$$\bullet \mapsto R_{AA} = \frac{dN_{AA}}{T_{AB}d\sigma_{PP}} = 1.00 \pm 0.16 \pm 0.14 \text{ (MinBias)}$$

Normalized Z yield vs. p_T and Rapidity

- 3 rapidity bins and 3 p_T bins
- $\frac{dN^z}{dy}$ is in a good agreement with different theoretical and MC predictions within statistical error bars and uncertainties
 - NLO calculation agrees with Z measurement in CMS

Z production in pp at 8 TeV

This analysis has been already done for 2010 data with low pile-up with L = 36 pb^{-1} at \sqrt{s} = 7TeV (J. High Energy Phys. 10 (2011) 132) and we redo it at \sqrt{s} = 8TeV

- CMS requested special LHC conditions during luminosity ramp up period to achieve low pile-up events (5) for good MET resolution at W:
 - LHC separate beams in transverse plane to reduce effective overlap
 - \bullet separation was periodically adjust to keep L_{inst} 3 10^{32} 6 10^{32} cm $^{-2}$ s $^{-1}$
 - Integrated L = $18.7 pb^{-1}$
 - \bullet Special HLT menu with low E_{T} / p_{T} thresholds: 22 GeV for electrons and 15 GeV for muons

Analysis cuts used :

- Electron channel $E_T>25$ GeV , $|\eta|<2.5$ exclude barrel/forward transition 1.4442 $<|\eta|<1.566$
- Muon channel $p_T > 25 \text{GeV/c}$, $|\eta| < 2.1$

- \bullet d σ /dM is calculated in the full phase space
- \bullet normalized to the cross section in the Z peak region (60 < M $<\!120$ GeV) to reduce systematic uncertainties
- good agreement with NNLO theoretical prediction, computed with FEWZ using MSTW2008 PDFs

Drell Yann

CMS-PAS-EWK-11-007

- \bullet 6 mass bins from 20 to 1500 GeV/c²
- Drell-Yan rapidity-invariant mass spectrum in detector acceptance is normalized to the Z resonance region, r = $(1/\sigma_{II} d\sigma/dMdY)$, as measured and as predicted by NLO POWHEG+CT10 PDF and NNLO FEWZ+MSTW2008 PDF calculations
- very important measurement for PDFs studies

$$\bullet$$
 $u\bar{d} \rightarrow W^+$

•
$$d\bar{u} \rightarrow W^-$$

- W mostly produced via the fusion of a valence quark and a sea antiquark

 - W are boosted in the valence quark direction (away from midrapidity)

- Spin conservation
 - $\mapsto \mu^+$ (μ^-) are boosted back to (away from) midrapidity
 - $\bullet \mapsto \mathsf{Asymmetric}\ \mu^+ \ \mathsf{and}\ \mu^- \ \mathsf{distributions},$ varying with pseudorapidity
 - $\bullet \mapsto \text{different acceptances for } W^+ \text{ and } W^-$

$$W^{\pm}
ightarrow \mu^{\pm}
u$$

CMS Experiment at the LHC, CERN

Data recorded: 2010-Nov-13 04:47:56.332426 GMT(05:47:56 CEST) Run / Event: 151027 / 1518723

 μ in barrel region $\eta = -0.7$

Muon p_T spectrum

- ullet Trigger and selection cuts on μ^\pm
 - Single muon triggers p_T ≥ 2-3 GeV/c
 Number of hits in the tracker > 10
 - Number of hits in the tracker > 10
 Compatibility with primary vertex
 - (< 0.3 mm)• $\chi^2/\text{ndf} < 10$

Veto on Z candidates

- ullet PYTHIA simulation : $W\pm o \mu^\pm
 u$ in pp collisions at $\sqrt{s}=2.76$ TeV
- ullet Bump in the region $p_T^\mu >$ 30 GeV/c where W decay product are expected
- At high p_T muons from W dominate
- $_{ullet}$ For the analysis we require $p_{T}^{\mu} > 25$ GeV/c

• $p_T = -\Sigma \vec{p_T}$ of all tracker tracks with $p_T > p_T^{thresh}$, $p_T^{thresh} = 3$ GeV/c

- Selecting a high p_T muon $\mapsto \langle p_T \rangle \sim 40$ GeV/c, and almost no dependence vs. centrality
- Good agreement between MC (W $\to \mu^{\pm} \nu$ signal embedded in HYDJET PbPb) and PbPb Data for missing p_T calculation

W transverse mass m_T

• We calculate the W transverse mass $m_T = \sqrt{2\rho_T^{\mu}} \not p_T (1 - \cos\phi)$ where $\phi = \phi(\mu) - \phi(\not p_T)$

- Sharp Jacobian peak at $m_T = m_W$, smeared by detector resolution
- pp data at $\sqrt{s}=2.76$ TeV analyzed with the same procedure

- Better m_T resolution in pp than in PbPb
- Residual contamination (Z $\rightarrow \mu^+\mu^-$, W $\rightarrow \tau\nu$) subtracted (2%); QCD (<1%) included in systematic uncertainty for both pp and PbPb

Centrality dependance

- Significant change in W^+ and W^- cross sections between pp and PbPb systems \to isospin effect
 - PbPb(W^+) reduced with respect to $\sigma_{PP}(W^+)$ $R_{AA}(W^+) = 0.82 \pm 0.07 \pm 0.09$
 - PbPb(W^-) enhanced with respect to $\sigma_{PP}(W^-)$ $R_{AA}(W^-) = 1.46 \pm 0.14 \pm 0.16$
- No dependence on centrality within uncertainties
- Once summed W^+ and W^- is consistent with pp

Muon charge asymmetry at $\sqrt{s} = 2.76$ TeV

• Muon charge asymmetry : $\frac{dN(W^+)-dN(W^-)}{dN(W^+)+dN(W^-)}$

- PbPb: Predominance of W^- production for large muon rapidities
- pp: W^+ production higher than W^-
- Measured values of asymmetry compatible with theoretical predictions (MCFM + CTEQ6.6 + EPS09 (nuclear PDFs))

W results in pp

- Fit MET distribution W extraction:
- W: MC with recoil corrected to data
- QCD model: analytic function
- Other background: from MC with xsec fixed to W from theory

Charge asymmetry in inclusive $W^{\pm} ightarrow \mu^{\pm} \ \nu$

- \bullet Data has flatter variation of the asymmetry in η then predicted by MSTW2008NLO, CT10W and NNPDF2.1 (NLO)
- Will provide significant contribution to PDFs

Charge asymmetry in inclusive $\mathsf{W}^{\pm} ightarrow e^{\pm} \ u$

- Good agreement with NLO prediction except MSTW
- ullet Background contribution increase with $|\eta|$
- Will provide significant contribution to PDFs

Z in PbPb

W in PbPb

W in pp

Good agreement with theoretical NNLO predition

√s = 8 TeV Data(stat ⊕ sys) FEWZ NNLO Prediction MSTW 2008 NLO Data(stat ⊕ sys ⊕ lumi) 4.8 5.2 5.4 46 $\sigma_{W}^{tot}xBR(W\rightarrow lv)[nb]$

Good agreement with theoretical NNLO prediction

Conclusion (in PbPb)

- Within uncertainties no modification is observed with respect to theoretical NLO pQCD p-p cross sections scaled by elementary nucleon-nucleon collisions
- Confirm the validity of Glauber scaling in nucleus-nucleus collisions
- For the Z boson, expected shadowing (10-20%), Isospin effect (3%) and energy loss (3%) cannot be confirmed or excluded, one need more statistics
- Individual W^+ and W^- yields in PbPb interactions exhibit an isospin effect, enhancement for W^- production and reduction of W^+ with respect to that measured in pp collisions at same \sqrt{s}
- Muon charge asymmetry evaluated in PbPb and pp interacting systems. In agreement with expectations from NLO pQCD calculations
- Detailed and precise studies on the Z and W may help constrain PDFs

Conclusion (in pp)

- First results at $\sqrt{s}=8$ TeV are presented: W and Z inclusive cross section
- W, Z and Drell-Yan are studied very detailed at $\sqrt{s}=7$ TeV :
 - Precise test of Standard Model
 - Significant contribution to PDFs
- Looking forward for more 8 TeV results

The most recent public results always could be found at https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsSMP

Back-up

$$extsf{Z}
ightarrow \mu^+ \ \mu^-$$
 and $extsf{Z}
ightarrow e^+ \ e^-$ with 2011 data

Ongoing analysis on Z $\rightarrow \mu^+ \ \mu^-$, Z \rightarrow $e^+ \ e^-$ with 2011 PbPb data

