Small-x Physics at RHIC and LHC

Pre-equilibrium and Initial State Physics Heavy Ion Collisions at the LHC Era, Qui Nhon, July 2012

Tapan Nayak

Parton Distribution Functions

Deep Inelastic Scattering: Probing distribution of partons inside hadrons

$$Q^{2} = 2(EE' - \vec{k} \cdot \vec{k'})$$

$$v = E - E'$$

$$x = Q^{2}/2Mv$$

x: the overall proton momentum carried by the parton

- Gluons drive a significant fraction of the scattering processes at LHC
- Precise determination of the PDFs of the proton in a wide range of x and Q², especially of the gluons
- Gluon-gluon (fusion) channel is a dominant channel for the production of SM Higgs

Gluon Distribution: Proton

 Small-x gluon density is large and continues to increase as x→0

Where does the saturation set in?

x < 0.01: virtually unknown and large uncertainties in the theoretical calculations (non –pertubative).

Gluon saturation at high density

Saturation at high density Q_s : Saturation momentum Q_s larger in A than in p Nuclei $\rightarrow Q_s^2 \propto A^{1/3}$

The Color Glass Condensate

See e.g., F. Gelis, E. Iancu, J. Jalilian-Marian, R. Venugopalan, arXiv:1002.0333

- Gluons are colored
- Glass: The sources of gluon field are static, evolving over much longer time scales than natural one – resulting theory of classical field and real distribution of stochastic source is similar to spin glass
- Condensate: Gluon occupation number is very large.

Parton distributions are replaced by ensemble of coherent classical fields:

Individual gluons arise from coherent sum of nucleon sources. Evolution to small x involve coherent sum of fields from several sources. This coherent sum of fields is the CGC

Accessing the saturation domain

Low-x Reach of RHIC and LHC

Kinematic Reach in pA

Brookhaven National Laboratory, New York

5TAR

km

1

RHIC

BRAHMS

DEMS

Au+Au

200 GeV
62.4 GeV
39 GeV
27 GeV
19.6 GeV
11.5 GeV
7.7 TeV

p-p200 GeV
500 GeV

d-Au • 200 GeV

BOOS

HTB

AGS

PHOBO

LINAC

Heavy lons at the LHC

2009: pp: $\sqrt{s} = 0.9$ and 2.3 TeV 2010: pp: $\sqrt{s} = 7 \text{ TeV}$ **PbPb: V**s_{NN} = **2.76 TeV** 2011: pp: $\sqrt{s} = 7 \text{ TeV}$ PbPb: √s_{NN} = 2.76 TeV 2012: pp: √s = 8 TeV 2013:

p-Pb & Pb-p = 4 TeV

Collisions at the LHC

p-p collisions

p-p: √s = 14 TeV p-Pb: √s = 8.8 TeV Pb-Pb: √s_{NN} = 5.5 TeV

- Test of pQCD and saturation models in a new \sqrt{s} and x regime
- Baseline for Pb-Pb
- p-Pb collisions
 - Probe nuclear PDFs
 - Disentangle initial and final state effects
- Pb-Pb collisions
 - Probe the hot and dense medium

• Unexplored small-x region

• Window on the rich phenomenology of high-density PDFs: Shadowing, Gluon saturation, Color Glass Condensate

CMS Experiment at LHC, CERN Data recorded: Mon Nov 8 11:30:53 2010 CEST Run/Event: 150431 / 630470 Lumi section: 173

RHIC R_{d+Au} at forward rapidities

BRAHMS: PRL 93, 242303 (2004)

$$R_{dAu} = \frac{1}{\langle N_{coll} \rangle} \frac{d^2 N^{d+Au}/dp_T d\eta}{d^2 N^{pp}_{inel}/dp_T d\eta}$$

where $\langle N_{coll} \rangle = 7.2\pm0.3$

- Cronin-like enhancement at η=0
- Consistent with PHOBOS at η=1

PHOBOS, PHYS. REV. C70 (2004) 061901(R)

Clear suppression as η **changes** from 0 to 3.2

d+Au collisions

R_{CP} at forward rapidities

BRAHMS

NPA 757 (2005) 1 - 27

Hadron production suppressed at forward rapidity

PRL 94, 082302

- Charged particles and π^0 are suppressed in the forward direction
- pQCD+shadowing calculations overpredict R_{dAu} at $\eta = 4$

Suppression of forward hadron production in d+Au collisions by **BRAHMS**. NPA 757 (2005) 1 - 27

Kharzeev, Kovchegov, Tuchin

Jallian-Marian

K. J. Eskola, V. J. Kolhinen, H. Paukkunen, C. A. Salgado

Dumitru

Saturation / CGC effects appear to • manifest at $x \sim 10^{-3}$ and p_T up to 3.5 GeV/c for Au nuclei at RHIC

Results : d+Au Collisions at RHIC

Significant rapidity dependence similar to expectations from R_{pA} within the Color Glass Condensate framework.

Good description of the p_T dependence for negatively charged hadrons at $\eta = 3.2$ and identified π^0 at $\eta = 4.0$, but the data prefer different K factors

Back to Back correlations

Color glass condensate predicts that the **back-to-back correlation should be suppressed in d+Au**

Back-to-back correlations with the color glass

The evolution between the jets makes the correlations disappear.

(Kharzeev, Levin, and McLerran, NP A748, 627)

Forward-midrapidity correlations in d+Au

 $π^0: |<η>| = 4.0$ h[±]: |η| < 0.75 $p_T > 0.5 \text{ GeV/c}$

Broadening, 'disappearance' of di-hadron, γ -hadron correlations are a compelling measurement

Interpretation: quark scatters off multiple guons (gluon field)

However, calculations in CGC framework difficult (4-point function) Some progress being made

Multiplicity & Energy Density RHIC and LHC $< dE_T/d\eta > vs. \sqrt{s_{NN}}$ for Central Au-Au/Pb-Pb Collisions 16 $dE_{T}/d\eta$ >/(0.5N_{part}) (GeV) ALICE (from E^{had}_τ; f_{total}=0.55) Phys. Rev. Lett. 105, 252301 (2010) PHENIX * STAR (dN_{ch}/dŋ)/(0.5(N_{part})) PbPb(0-5 %) ALICE △ pp NSD ALICE A NA 49 PbPb(0-5 %) NA50 ○ pp NSD CMS • WA98 ▲ AuAu(0-5 %) BRAHMS ☆ pp NSD CDF 10-E802/917 ALICE Preliminary ∝ **s**₀.15 ★ AuAu(0-5 %) PHENIX ♦ pp NSD UA5 ·A+B*ln(√s) PbPb @ \s=2.76 TeV AuAu(0-5%) STAR * pp NSD UA1 EKRT ▼ AuAu(0-6 %) PHOBOS \times pp NSD STAR AA pp(pp) ∝ **s**₀.11 10² 10³ 10 10⁴ 2 $\sqrt{s_{_{ m NN}}}$ (GeV) 0 $\varepsilon_{Bj}(\tau) = \frac{1}{\pi R^2 \tau} \frac{dE_T}{dy}$ 10² 10³ $\sqrt{s_{_{ m NN}}}$ (GeV)

Charged particle per participant pair is seen to rise like s^{0.15}, stronger than pp(s^{0.11}).

 $\epsilon.\tau^{\sim}$ 16 GeV/fm²c

Energy Density at LHC is at least 3 times more than that at RHIC

Dependence of Multiplicity on Energy

$$\begin{array}{ll} \displaystyle \frac{dN_h}{d\eta} & \propto & Q_s^2 \propto s^{0.11} \ \ \text{for} \ \ Qs \leq 1 \ \text{GeV} \\ \\ \displaystyle \frac{dN_h}{d\eta} & \propto & s^{0.11} \ast s^{0.035} = s^{0.145} \ \ \text{for} \ \ Qs > 1 \ \text{GeV} \end{array}$$

Multiplicity distributions

Negative binomial distribution parameters and KNO scaling predicted by CGC

Important for further analysis: higher order vn flow analysis, and inclusive ridge

- Negative binomial and KNO quantitatively predicted by CGC-Glasma
- Fluctuations in pp collisions follow predictions form CGC-Glasma

Inclusive J/ Ψ

Results at 2.76 TeV useful for ALICE as a reference for the R_{AA} extraction in *PbPb* collisions:

- ALICE: Suppression (R_{AA}) is ~0.5, independent of centrality
- This suppression is about factor 2 less at LHC than at RHIC
- Larger suppression seen at LHC for higher p_T cuts
- pPb collision will be important to understand these results₃₃

x-values for charm and beauty at y=0 and p_T ->0

	SPS	RHIC	LHC	LHC
	Pb-Pb	Au-Au	Pb-Pb	рр
	17 GeV	200 GeV	5.5 TeV	14 TeV
c-cbar	$x = 10^{-1}$	$x = 10^{-2}$	$x = 4x10^{-4}$	$x = 2x10^{-4}$
b-bbar	-	-	$x = 2x10^{-3}$	$x = 6 \times 10^{-4}$

\textbf{R}_{AA} for e and μ from Heavy Quarks

R_{AA} of electrons and muons are consistent within errors.

From FONLL: B-decays dominate above ~ 5-6 GeV/c.

Thus: b suppression appears to be large as well!

The D meson nuclear modification

- Suppression for charm with respect to binary scaling is a factor 3-4 above 5 GeV/c
- Compatible among the three species
- Less suppression in peripheral collisions

Andrea Dainese

- Small effect expected from PDFs shadowing above 5 GeV/c
- p-Pb run at LHC crucial to measure initial-state effects

CERN, 19.06.12 Andrea Dainese

p-Pb Collisions at LHC: Feb 2013

- proton Pb collisions in Feb 2013
- 24 days of LHC operation
- Cross section (p-Pb) about 2 barn
- Initial Luminosity: 10²⁸ cm⁻² s⁻¹
- Rate: 20 200 kHz

Aim:

- p-Pb as reference for PbPb
 - Particle production
 - Particle correlation
 - Energy loss
 - Jets
 - quarkonia
 - Heavy flavor
 - W, Z production
- Low-x QCD dynamics
- Gamma-induced processes in ulraperipheral collisions

ALICE< ATLAS and CMS will be ready for p-Pb collisions

p-Pb Collisions at LHC

Sensitive to various CGC model ingredients and initial conditions

p-Pb: inclusive hadron production $(dN_{ch}/d\eta \text{ and } dN/dp_T)$ at y ≈ 0 p-Pb: azimuthal decorrelations of forward-backward dijets (dihadrons)

Detector	Functionality	Acceptance (η, ϕ)
ITS	vertexing, tracking,	$\pm 2, 360^{\circ}$
(SPD, SDD, SSD)	PID at low $p_{\rm T}$	
TPC	Tracking, PID	± 0.9 , full ϕ
TRD	Electron ID	± 0.84 , full ϕ
TOF	PID	± 0.9 , full ϕ
HMPID	PID at high $p_{\rm T}$	$\pm 0.6, 1.2^{\circ} - 360^{\circ}$
PHOS	Photon spectrometer	$\pm 0.12, 220^{\circ} - 320^{\circ}$
EMCAL	EM Calorimeter	$\pm 0.7, 80^{\circ} - 187^{\circ}$
ACORDE	Cosmic trigger	$\pm 1.3, -60^{\circ} - 60^{\circ}$
Muon Spectrometer	Muon pairs	-2.5 to -4.0, full ϕ
PMD	Photon Multiplicity	2.3 to 4.0, full ϕ
FMD	Charged Multiplicity	-1.7 to -3.4, full ϕ
		1.7 to 5.03, full ϕ
V0	Trigger	-1.7 to -3.4, full ϕ
		2.8 to 5.1, full ϕ
TO	Trigger, timing	-2.97 to -3.28, full ϕ
		4.71 to 4.92, full ϕ
ZDC(ZN and ZP)	Zero Degree Calorimeter	8.8
ZEM	EM Calorimeter	4.8 to 5.7, partial ϕ
Proposed Forward	EM Calorimeter	2.5 to 5.0, full ϕ
Calorimeter		

Coverages of detector subsystems and their functionality in ALICE expt.

A new detector: Forward Calorimeter (FoCal) in ALICE

FoCal: (i) 2.3<η<4, (ii) 3.5<η<5.5

- Major Physics of FoCal
 - Investigate new details of parton Eloss in Pb+Pb with detailed fragmentation information (PID) about coincident jet in the Central Barrel.
 - Gamma (FoCal) + Jet (Central Barrel) coincidence cleanly tags a recoiling <u>quark</u> jet (i.e. parton ID) with "<u>known</u>" <u>quark momentum</u>.
 - \circ Jet+Jet (or π^0 +X,X=jet or hadron) coincidence cleanly tags a recoiling <u>gluon</u> jet (mostly) with constrained initial parton kinematics. Probes initial state PDFs over a much broader kinematic regime than with CB alone.

- FoCal Design Criteria: (Direct γ driven)
 - Rates \rightarrow Energy range
 - Yields for direct γ, γ+jet
 - Yields for jets (π^0 , decay γ background)
 - Energy resolution: Moderate requirements due to boost
 - Excellent lateral segmentation for γ/π^0 discrimination to optimize direct/decay γ (S/B)
 - This is where ALICE must beat other LHC experiments
 - Studies with realistic geometries and algorithms are just getting underway
 - Trigger capability for γ 's and jets is essential

Forward Calorimeter in ALICE

Tungsten – Silicon Calorimetry

Physics:

- Initial State: Low-x Gluon Saturation
- **Initial State: Nuclear PDFs**
- Probing the strongly interacting matter thru the study of jet quenching, flow and long range correlations.

25 Layers (each 1m² area)

- 22 layers of 1cm x 1cm silicon pads
- 3 layers of 1mmx1mm silicon pads
- OR
- MAPS

(A possible) FoCal Geometry

192 FoCal Module geometry 2200kg; 1.55m²

9x9cm modules@360m gives:

$$\Theta_{\min} = 2.0^{\circ}; \ \eta_{\max} = 4.0 \ (Full \phi) \\ \Theta_{\max} = 11.3^{\circ}; \ \eta_{\min} = 2.3 \ (Full \phi)$$

Expression of Interest

A Forward Electromagnetic Calorimeter (FoCal) for the ALICE experiment

The FoCal Collaboration

April 26, 2011

Abstract

As an upgrade of the ALICE experiment at the CERN-LHC, we would like to build and install a Forward Electromagnetic Calorimeter (FoCal) to be placed in the pseudorapidity region of $2.5 < \eta < 4.7$, at the position of the existing Photon Multiplicity Detector (PMD). The basic motivation of including the calorimeter in the forward direction is to study outstanding fundamental QCD problems at low Bjorken-x values, such as parton distributions in the nuclei, test of pQCD predictions and to probe high temperature and high density matter in greater detail. A comprehensive measurement of p-p, p-Pb and Pb-Pb collisions at the highest LHC energies will be required. For these measurements, the detector needs to be capable of measuring photons for energies up to at least $E \sim 200 \text{ GeV}/c$. It should allow discrimination of direct photons from neutral pions in a large momentum range and should also provide reasonable jet energy measurements. At present, two possible designs are being considered based on silicon-tungsten calorimetry. It is envisaged to install one more detector of similar technology at even larger pseudorapidity (up to 7) region in future.

Lol Due: September 2012

For installation in 2017-18

Additional: Hadronic Calorimeter behind the FoCal

- RHIC has given us guidance which way to go
- Lots of new results to come at LHC for pp, p-Pb and Pb-Pb.

Thanks to ALICE Collaborators, FoCal Collaborators, CMS colleagues and Several speaker, whose slides I have borrowed from pA workshop which was held at CERN recently.