Quarkonia Production in Heavy Ion Collisions

Che-Ming Ko, Texas A&M University

- In-medium properties of quarkonia
- Quarkonia production mechanisms in HIC
- Nuclear modification factor for J/ψ
- Nuclear modification factor for Y(1S)
- J/ψ elliptic flow
- Effects of initial fluctuation on J/ψ production

Based on work with Taesoo Song and Kyong chol Han: PRC 83, 014914 (2011); 84, 034907 (2011); 85, 014902 (2012); 85, 054905 (2012); arXiv:1109.6691 [nucl-th]

Support by US National Science Foundation and Department of Energy, and The Welch Foundation

Quarkonia in QGP

Free energy F from a pair of $Q\bar{Q}$ from LQCD [Kacmareck, EJP 61, 811 (2009)]

Two limits of the potential:

$$V(r,T) = F$$
 or
$$V(r,T) = U = F + TS$$

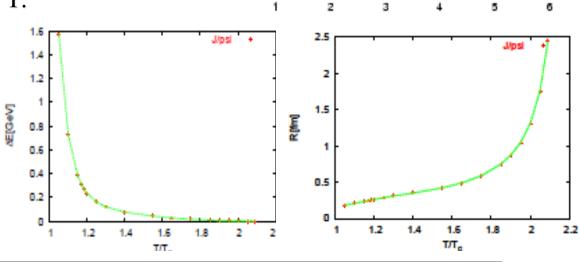
Schroedinger equation at finite T:

binding energy $\varepsilon(T)$ radius R(T)

Dissociation temperature:

$$\varepsilon(T_D) \to 0, R(T_D) \to \infty$$

For V=U (Satz et al.)



 $F_1(r,T)/\sigma^{1/2}$

2.5

2

1.5

1

0.5

0

-0.5

=U (Satz et al.)				1 1.2 1.4 1.6 1.8 2 2 1 1.2 1.4 T/T.				т/т,	
	state	$J/\psi(1S)$	$\chi_e(1P)$	$\psi'(2S)$	$\Upsilon(1S)$	$\chi_b(1P)$	$\Upsilon(2S)$	$\chi_b(2P)$	$\Upsilon(3S)$
	T_d/T_c	2.10	1.16	1.12	> 4.0	1.76	1.60	1.19	1.17

Screened Cornell potential for heavy quark and antiquark in QGP

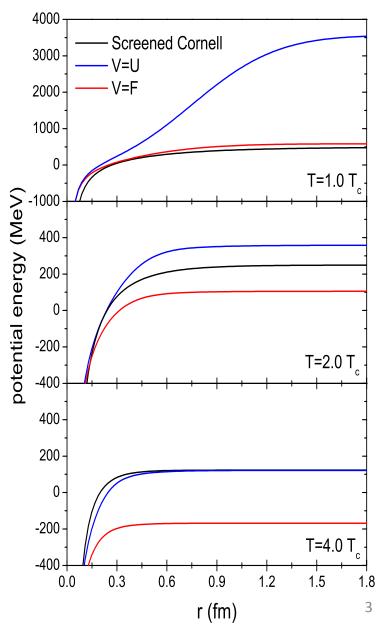
 Screened Cornell potential between charm and anticharm quarks

$$V(r,T) = \frac{\sigma}{\mu(T)} \left[1 - e^{-\mu(T)r} \right] - \frac{\alpha}{r} e^{-\mu(T)r}$$

with string tension $\sigma = 0.192 \; GeV^2$ and screening mass

$$\mu(T) = \sqrt{\frac{N_c}{3} + \frac{N_f}{6}} gT$$

■ Its strength is between the internal energy (U) and free energy (F) of heavy quark and antiquark from LQCD; similar to F at T_c and to U at 4T_c.



Thermal properties of charmonia

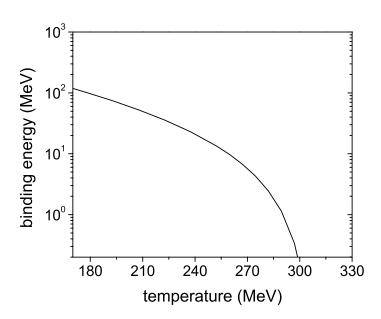
Binding energy

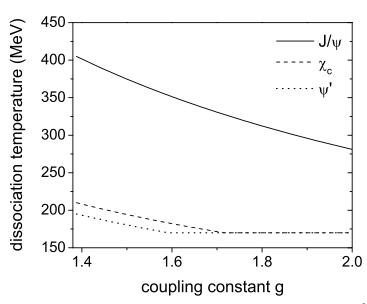
$$\varepsilon_0 = 2m_c + \frac{\sigma}{\mu(T)} - E$$

Charm quark mass m_c=1.32 GeV E: eigenvalues of Cornell potential

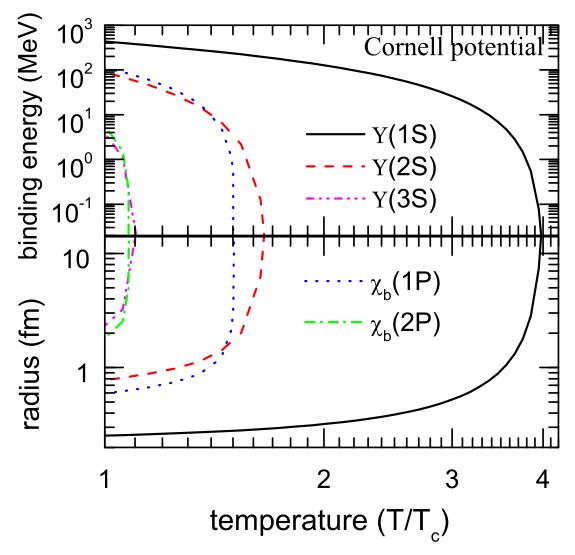
• Dissociation temperature T_D : corresponding to ε_0 =0

For g=1.87, $T_D \sim 300$ MeV for J/ ψ and $\sim T_D = 175$ MeV for ψ ' and χ_c





Thermal properties of bottomonia

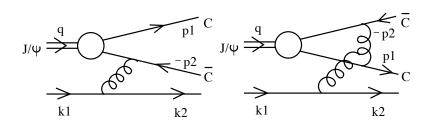


State	$\Upsilon(1S)$	$\chi_b(1P)$	$\Upsilon'(2S)$	$\chi_b'(2P)$	$\Upsilon''(3S)$
Dissociation temp (T_c)	4	1.51	1.67	1.09	1.12 5

Thermal decay widths of quarkonia

Song, Park & Lee, PRC 81, 034914 (10)

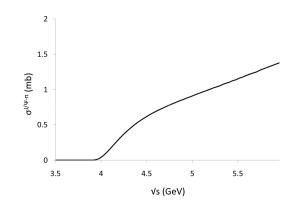
Dissociation by partons (NLO pQCD)



$$\left| \overline{M} \right|^2 = \frac{4}{3} g^4 m_c^2 m_{J/\psi} \left| \frac{\partial \psi(p)}{\partial p} \right|^2 \left\{ -\frac{1}{2} + \frac{(k_1^0)^2 + (k_2^0)^2}{2k_1 \cdot k_2} \right\}$$

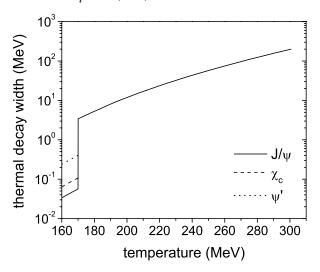
Dissociation by hadrons

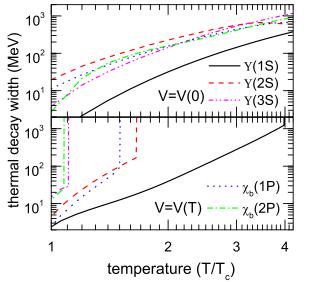
$$\sigma(s) = \sum_{i} \int dx n_{i}(x, Q^{2}) \sigma_{i}(xs, Q^{2})$$



Thermal dissociation width

$$\Gamma(T) = \sum_{i} \int \frac{d^3k}{(2\pi)^3} v_{rel}(k) n_i(k,T) \sigma_i^{diss}(k,T)$$





Directly produced J/ψ

Song, Park & Lee, PRC 81, 034914 (10)

Number of initially produced

$$N_{J/\psi}^{AA} = \sigma_{J/\psi}^{NN} A^2 T_{AA}(\vec{b})$$

- $\sigma_{J/\psi}^{NN}$: J/ ψ production cross section in NN collision; $\sim 0.774 \ \mu b$ at $s^{1/2}=200 \ GeV$
- Overlap function

$$T_{AA}(\vec{b}) = \int d^2\vec{s} T_A(\vec{s}) T_A(\vec{b} - \vec{s})$$

• Thickness function

$$T_A(\vec{s}) = \int_{-\infty}^{\infty} dz \rho_A(\vec{s}, z)$$

• Normalized density distribution

$$\rho(r) = \frac{\rho_0}{1 + e^{(r - r_0)/c}}$$

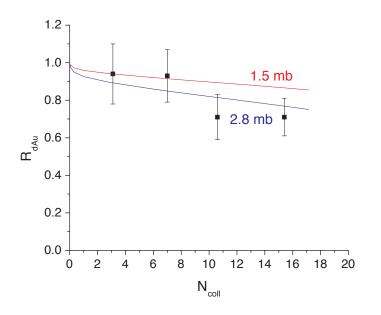
 r_0 = 6.38 fm, c=0.535 fm for Au

- Nuclear absorption
 - Survival probability

$$S_{nucl}(\vec{b}, \vec{s}) = \frac{1}{T_{AB}(\vec{b})} \int dz dz' \rho_A(\vec{s}, z) \rho_B(\vec{b} - \vec{s}, z')$$

$$\times \exp\left\{-(A - 1) \int_z^\infty dz_A \rho_A(\vec{s}, z_A) \sigma_{nuc}\right\}$$

$$\times \exp\left\{-(B - 1) \int_{z'}^\infty dz_B \rho_B(\vec{s}, z_B) \sigma_{nuc}\right\}$$



Regenerated J/\psi

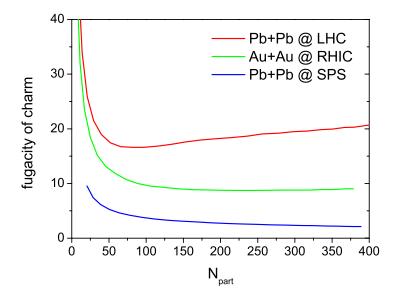
Rate equation for J/ψ production

$$\frac{dN_{i}}{d\tau} = -\Gamma_{i} \left(N_{i} - N_{i}^{eq}\right), \quad N_{i}^{eq} = \gamma^{2} R n_{i}^{GC} V$$

Charm fugacity is determined by

$$N_{c\bar{c}}^{AA} = \left[\frac{1}{2} \gamma n_o \frac{I_1(\gamma n_0 V)}{I_0(\gamma n_0 V)} + \gamma^2 n_h \right] V = \sigma_{c\bar{c}}^{NN} A^2 T_{AA}(\vec{b})$$

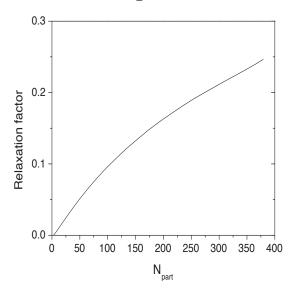
• $\sigma_{c\bar{c}}^{NN}$: charm production cross section in NN collision; ~ 63.7 µb at s^{1/2}= 200 GeV



Charm relaxation factor

$$R = 1 - \exp\left\{-\int_{\tau_0}^{\tau_{QGP}} d\tau \Gamma_c(T(\tau))\right\}$$
$$\Gamma(T) = \sum_i \int \frac{d^3k}{(2\pi)^3} v_{rel}(k) n_i(k,T)$$
$$\times \sigma_i^{diss}(k,T) \left(1 - \vec{p} \cdot \vec{p}'/p^2\right)$$

as J/ψ is more likely to be formed if charm quarks are in thermal equilibrium



Approximately reproduced by non-equilibrium charm quarks from parton cascade [PRC 85, 954905 (12)]

Viscous hydrodynamics Heinz, Song & Chaudhuri, PRC 73, 034904 (06)

Hydrodynamic Equations

$$\partial_{\mu}T^{\mu\nu}(x) = 0$$
 Energy-momentum conservation

$$\partial_{\mu} n_{i} u^{\mu}(x) = 0$$
 Charge conservations (baryon, strangeness,...)

$$\pi_{\mu\nu} = \eta \left(\partial_{\mu} u_{\nu} + \partial_{\mu} u_{\nu} - \frac{2}{3} \Delta_{\mu\nu} \partial_{\alpha} u^{\alpha} \right) - \tau_{\pi} \left(\frac{4}{3} \pi_{\mu\nu} \partial_{\alpha} u^{\alpha} + \Delta_{\mu}^{\alpha} \Delta_{\nu}^{\beta} u^{\sigma} \partial_{\sigma} \pi_{\alpha\beta} \right)$$
 (Israel-Stewart)

with
$$T^{\mu\nu}(x) = [e(x) + p(x)]u^{\mu}(x)u^{\nu}(x) - p(x)g^{\mu\nu} + \pi_{\mu\nu}$$

e: energy density, p(e): pressure, $\pi_{\mu\nu}$: shear stress tensor u^{μ} : four velocity, τ_{π} : relaxation time

Cooper-Frye instantaneous freeze out

$$E \frac{dN_i}{d^3q} \approx \frac{g_i}{(2\pi)^3} \int q \cdot d\sigma \frac{1}{\exp(q \cdot u/T) \pm 1} \left[1 + \frac{q_\mu q_\nu \pi^{\mu\nu}}{2T^2(e+p)} \right]$$

Schematic viscous hydrodynamics

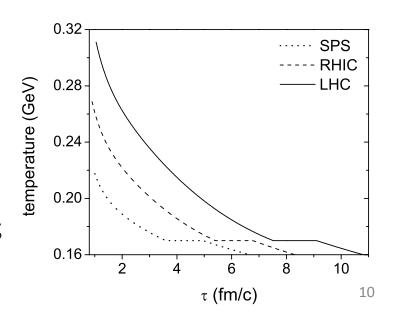
Song, Han & Ko, PRC 83, 014914 (11)

Assuming thermal quantities (energy density, temperature, entropy density, and pressures) and shear tensor are uniform along the transverse direction

$$\begin{split} \partial_{\tau}(A\tau\langle T^{\tau\tau}\rangle) &= - \Big(p + \pi^{\eta}_{\eta}\Big) A, \\ \frac{T}{\tau} \partial_{\tau}(A\tau s\langle \gamma_{r}\rangle) &= -A \bigg(\frac{\gamma_{r} v_{r}}{r}\bigg) \pi^{\phi}_{\phi} - \frac{A\langle \gamma_{r}\rangle}{\tau} \pi^{\eta}_{\eta} + \bigg\{\partial_{\tau}(A\langle \gamma_{r}\rangle) - \frac{\gamma_{R}\dot{R}}{R}A\bigg\} \Big(\pi^{\phi}_{\phi} + \pi^{\eta}_{\eta}\Big), \\ \partial_{\tau} \Big(A\langle \gamma_{r}\rangle \pi^{\eta}_{\eta}\Big) - \bigg\{\partial_{\tau}(A\langle \gamma_{r}\rangle) + 2\frac{A\langle \gamma_{r}\rangle}{\tau}\bigg\} \pi^{\eta}_{\eta} &= -\frac{A}{\tau_{\pi}} \bigg[\pi^{\eta}_{\eta} - 2\eta_{s}\bigg\{\frac{\langle \theta\rangle}{3} - \frac{\langle \gamma_{r}\rangle}{\tau}\bigg\}\bigg], \\ \partial_{\tau} \Big(A\langle \gamma_{r}\rangle \pi^{\phi}_{\phi}\Big) - \bigg\{\partial_{\tau}(A\langle \gamma_{r}\rangle) + 2A\bigg(\frac{\gamma_{r} v_{r}}{r}\bigg)\bigg\} \pi^{\phi}_{\phi} &= -\frac{A}{\tau_{\pi}} \bigg[\pi^{\phi}_{\phi} - 2\eta_{s}\bigg\{\frac{\langle \theta\rangle}{3} - \bigg(\frac{\gamma_{r} v_{r}}{r}\bigg)\bigg\}\bigg], \end{split}$$

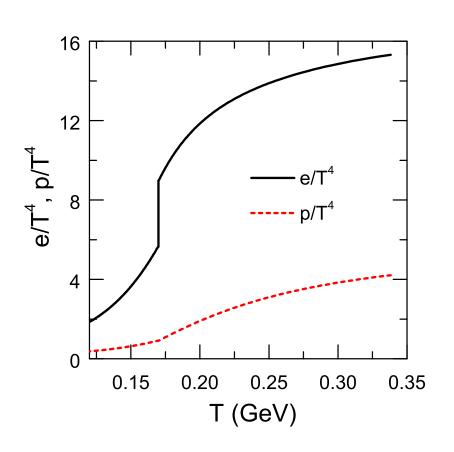
with $\langle \gamma_r \rangle = \frac{2}{3\gamma_R^2 \dot{R}^2} (\gamma_R^3 - 1), \quad \langle \frac{\gamma_r v_r}{r} \rangle = \frac{\gamma_R \dot{R}^2}{R}$ $\langle \gamma_r^2 \rangle = 1 + \frac{\gamma_R^2 \dot{R}^2}{2}, \quad \langle \gamma_r^2 v_r^2 \rangle = \frac{\gamma_R^2 \dot{R}^2}{2}, \quad \gamma_R = \frac{1}{\sqrt{1 - \dot{R}^2}}$ $\theta = \frac{1}{\tau} \partial_{\tau} (\tau \gamma_r) + \frac{1}{r} \partial_{r} (r v_r \gamma_r), \quad A = \pi R^2$

Taking initial thermalization time τ_0 =1.0, 0.9 and 1.05 for SPS, RHIC and LHC; η/s =0.16 for QGP at SPS and RHIC and 0.2 at LHC, and 0.8 for HG; and τ_π =3/T(η/s)



Quasiparticle model for QGP

P. Levai and U. Heinz, PRC, 1879 (1998)



$$p(T) = \sum_{i=g,q,\bar{q}} \frac{g_i}{6\pi^2} \int_0^\infty dk f_i(T) \frac{k^4}{E_i} - B(T)$$

$$e(T) = \sum_{i=g,q,\bar{q}} \frac{g_i}{2\pi^2} \int_0^\infty dk k^2 f_i(T) E_i + B(T)$$

$$m_g^2 = \left(\frac{N_c}{3} + \frac{N_f}{6}\right) \frac{g^2(T)T^2}{2}$$

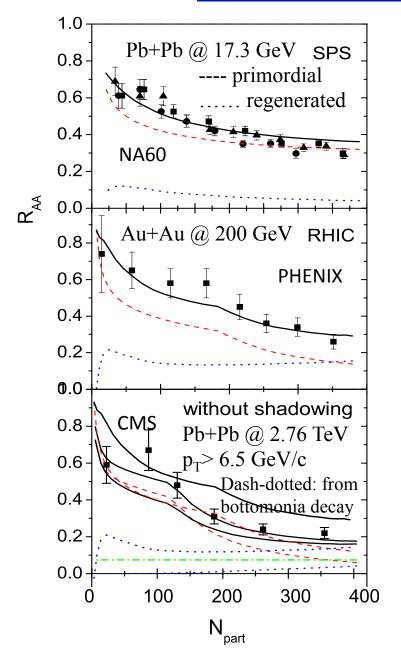
$$m_q^2 = \frac{g^2(T)T^2}{3}$$

$$g^2(T) = \frac{48\pi^2}{(11N_c - 2N_f) \ln F^2(T, T_c, \Lambda)}$$

$$F(T, T_c, \Lambda) = \frac{18}{18.4e^{-(T/T_c)^2/2} + 1} \frac{T}{T_c} \frac{T_c}{\Lambda}$$

 Resulting EOS is similar to that from LQCD by the hot QCD collaboration, and the difference is smaller than that between the hot QCD and Wuppertal-Budapest Collaborations

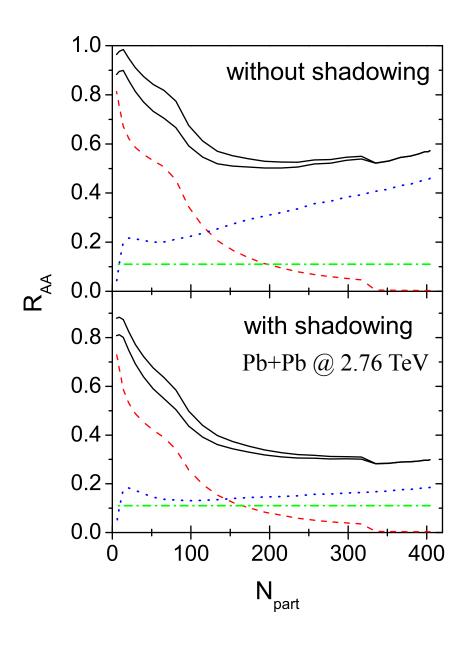
Nuclear modification factor for J/\psi



	SPS	RHIC	LHC	LHC
				$p_T > 6.5 \text{ GeV}$
production (μb)				
$d\sigma^{pp}_{J/\psi}/dy$	0.05	0.774	4.0	
$d\sigma^{pp}_{car{c}}/dy$	5.7	119	615	
feed-down (%)				
f_{χ_c}	25	32	26.4	23.5
$f_{\psi'(2S)}$	8	9.6	5.6	5
f_b			11	21
nuclear absorp.				
$\sigma_{ m abs} \ ({ m mb})$	4.18	2.8	0 or 2.8	

- Most J/ψ are survivors from initially produced
- Kink in R_{AA} is due to the onset of initial temperature above the J/ψ dissociation temperature in QGP
- Inclusion of shadowing reduces slightly R_{AA}

Nuclear modification factor for J/\psi at LHC



Upper solid: $\sigma_{abs}=0$

Lower solid: σ_{abs} =2.8 mb

Dashed: primordial

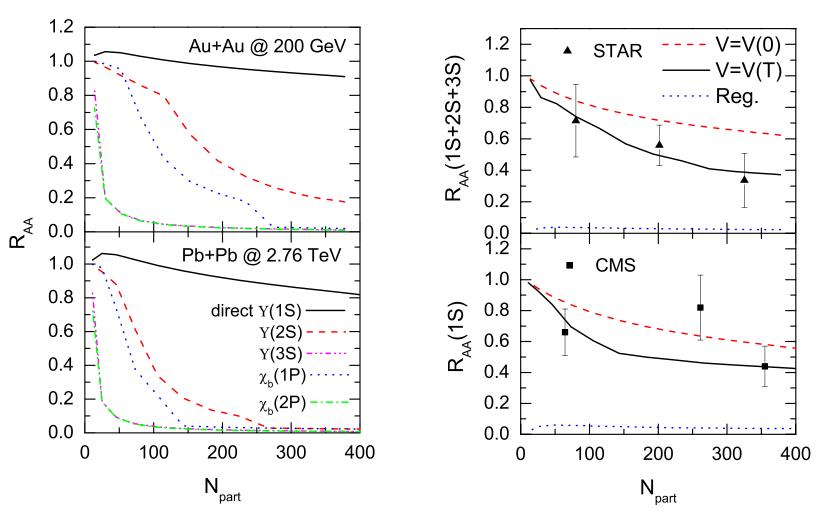
Dotted: regenerated

Dash-dotted: B decay

For J/ψ with $p_T > 0$

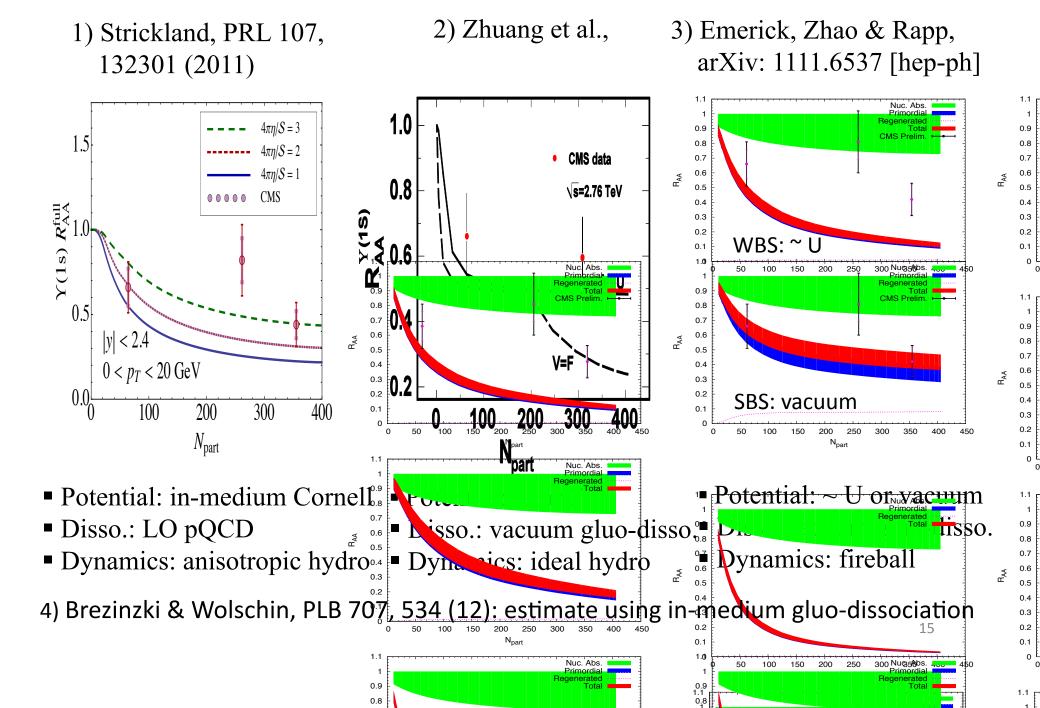
- Survival of primordial J/ψ dominates in peripheral collisions
- Regeneration contribution dominates in central collisions

Nuclear modification factor for $\Upsilon(1S)$

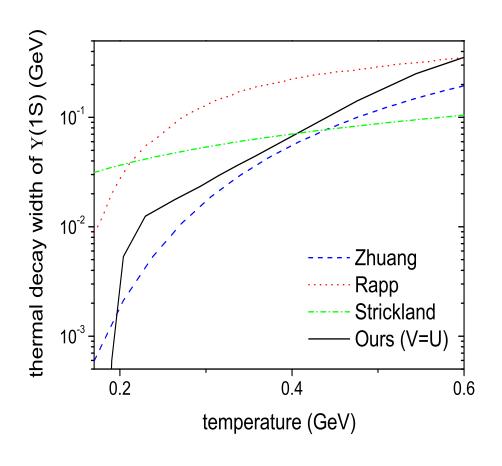


- Regeneration contribution is negligible
- Primordial excited bottomonia are largely dissociated
- Medium effects on bottomonia reduce R_{AA} of Y(1S)

Y(1S) nuclear modification factor at LHC from other models



Thermal decay width of Y(1S) in different models

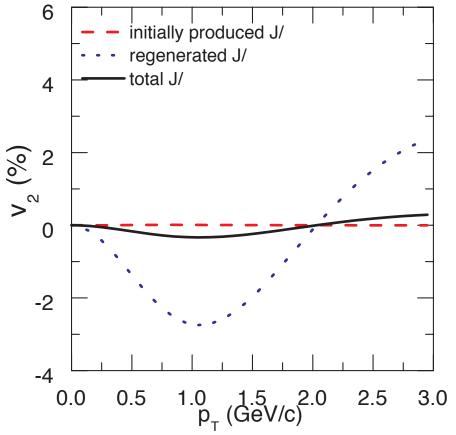


- Thermal decay width
 - Rapp: quasielastic scattering
 - Zhuang: OPE by Peskin
 - Stricland: LO pQCD
 - Song: NLO pQCD

Very different thermal decay widths are used in different models

J/ψ elliptic flow

Song, Lee, Xu & Ko, PRC 83, 014914 (11)



$$v_2 = \frac{\int d\varphi \cos(2\varphi)(dN/dyd^2p_T)}{\int d\varphi(dN/dyd^2p_T)}$$

$$= \frac{\int dA_T \cos(2\varphi) I_2(p_T \sinh \rho/T) K_1(m_T \cosh \rho/T)}{\int dA_T I_0(p_T \sinh \rho/T) K_1(m_T \cosh \rho/T)}$$

 ρ =tanh(v_T)=transverse rapidity

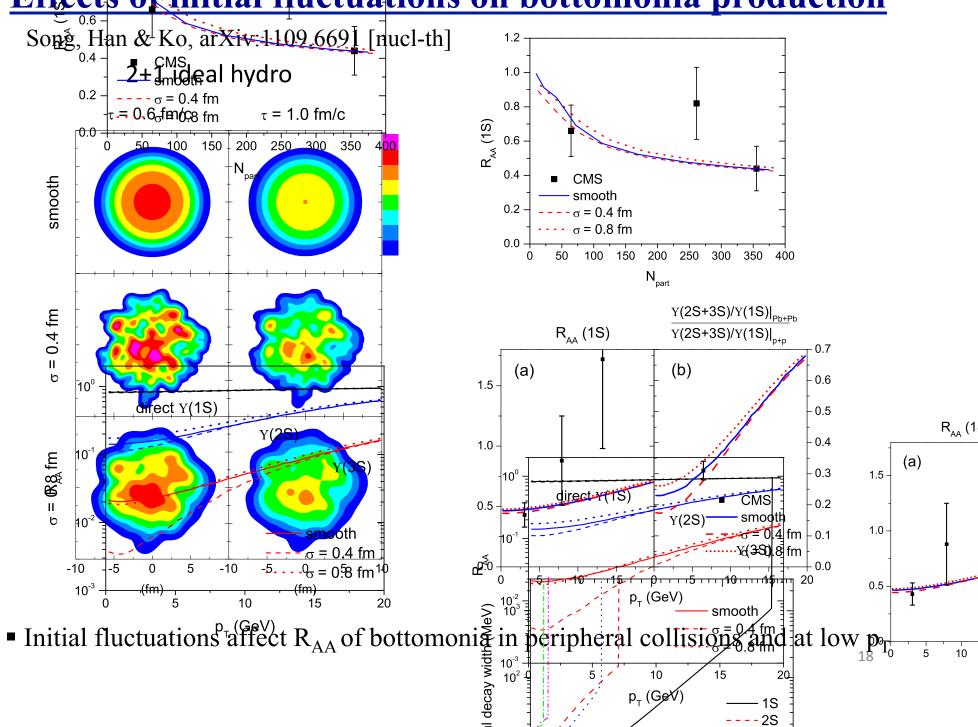
Introducing viscous effect at freeze out T=125 MeV

$$\Delta v = (v_x - v_y) \exp[-Cp_T/n]$$

with C=1.14 GeV⁻¹ and n= number of quarks in a hadron

- Initially produced J/ψ have essentially vanishing v_2
- Regenerated J/ ψ have large v_2
- Final J/ ψ v₂ is small as most are initially produced

1.0 -



Summary

- J/ ψ survives up to 1.7 T_c and Y(1S) survives up to 4 T_c
- Most observed J/ ψ and Y(1S) are from primordially produced; contribution from regeneration is small at present HIC
- Various models with different assumptions can describe experimental data
- Elliptic flow of regenerated J/ ψ is large, while that of directly produced ones is essentially zero. Studying v_2 of J/ ψ is useful for distinguishing the mechanism for J/ ψ production in HIC
- Initial fluctuations affect R_{AA} of bottomonia in peripheral collisions and at low p_T