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Introduction

Saturation phenomenology in dense-dilute processes

Color Glass Condensate and related formalisms with gluon
saturation effects: useful to study dense-dilute processes, like DIS
observables and forward particle production.

Phenomenological state of the art:

Successful description of inclusive (and diffractive) DIS
Albacete, Armesto, Milhano, Quiroga, Salgado (2011)

Kuokkanen, Rummukainen, Weigert (2011)

and of single inclusive forward particle production in pA or pp
collisions
Albacete, Marquet (2010)

using the dipole-target amplitude from numerical simulations of
the BK equation (at Leading Logs + running coupling) together
with the LO impact factors.
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Recent theoretical progresses towards NLO/NLL

NLL corrections to the BK equation
Balitsky, Chirilli (2008)

NLO corrections to DIS structure functions
Balitsky, Chirilli (2011)

G.B. (2012)

NLO corrections to forward single inclusive particle production
in pA or pp
Chirilli, Xiao, Yuan (2012)

Demonstration that the same BK equation at NLL applies for
both DIS and particle production (non-trivial crossing of
Wilson lines)
Mueller, Munier (2012)



Gluon saturation at higher orders and improvement of kinematics

Introduction

Need for collinear resummations

Main obstacle to gluon saturation phenomenology at NLO/NLL:
Pathologically large corrections appears in the NLL BK equation
(like in the NLL BFKL equation), making solutions of that
equation unstable, and indicating a breakdown of the formalism.

⇒ Need to resum these large contributions in order to obtain a
stable and reliable the NLL BK equation.

Similar resummations have been performed in the BFKL case,
Salam (1998)
Ciafaloni, Colferai, Salam, (Staśto) (1999-2007)

Altarelli, Ball, Forte (1999-2008)

but non-trivial to adapt to BK.

Main topic of this talk: one step in that direction
G.B., in preparation
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Introduction

Outline

DIS impact factors at LO and NLO

→ mostly based on:
G.B., Phys.Rev. D85 (2012) 034039, arXiv:1112.4501 [hep-ph].

Factorization of high-energy Leading Logs in DIS

Improvement of kinematics in the BK equation
G.B., in preparation
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DIS at LO and NLO at high energy

Deep inelastic Scattering (DIS) cross-section

γ
∗
, q+,Q2
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e± e±
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d
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dx dQ2
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αem
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DIS at LO and NLO at high energy

Dipole factorization of DIS at LO order

⊗ ⊗
q+,Q

x0, z0

x1, z1
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x1, z1

σ
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T ,L(xBj ,Q

2) = 2 2Nc αem
(2π)2

∑

f e
2
f

∫

d
2
x0 d

2
x1

∫ 1
0 dz1 ILO

T ,L(x01,1−z1,z1)

[

1−〈S01〉

]

Nikolaev, Zakharov (1991)

ILO
T ,L ∝ |virtual photon light-front wave-function|2

.
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DIS at LO and NLO at high energy

Dipole factorization of DIS at LO order
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DIS at LO and NLO at high energy

Dipole factorization of DIS at LO order

⊗ ⊗
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DIS at LO and NLO at high energy

Dipole-target amplitude

In the CGC formalism, the dipole-target elastic S-matrix S01 is
related by

S01 =
1

Nc
tr

(

U(x0) U
†(x1)

)

to the fondamental Wilson line in the semiclassical gluon field A−
a

of the target:

U(x) = P exp

[

ig

∫

dx+ T a A−
a (x

+, x, 0)

]

〈· · · 〉 : statistical average over the target gluon field A−
a

in the Color Glass Condensate formalism.
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NLO virtual photon cross sections

NLO corrections to DIS at high energy

⊗ ⊗

x0, z0

x2, z2

x2, z2

+ virtual corrections.

σ
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2
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NLO virtual photon cross sections

Longitudinal NLO impact factor

INLO
L
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with the notation

X 2
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2
10 + z2 z0 x

2
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2
21

and the DGLAP quark to gluon splitting function

P(z) =
1

2

[

1 + (1−z)2
]
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NLO virtual photon cross sections

Transverse NLO impact factor
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NLO virtual photon cross sections

Formation time interpretation of the prefactors

The DIS impact factors contain a prefactor dependent on the
variable

X 2
2 = z1 z0 x

2
10 (with z0 + z1 = 1)

for the LO ones and

X 2
3 = z1 z0 x

2
10 + z2 z0 x

2
20 + z2 z1 x

2
21 (with z0 + z1 + z2 = 1)

for the NLO ones.

2q+X 2
2 and 2q+X 2

3 are the formation time of the qq̄ and qq̄g

Fock states in the photon wave-function.

The K
2
0,1(QXn) prefactors then suppress exponentially the Fock

states whose formation time is larger than the virtual photon
lifetime 2q+/Q2.



Gluon saturation at higher orders and improvement of kinematics

High energy factorization and Leading Logs

High-energy factorization

Rapidity divergence of 〈S01〉 and soft divergence of the z2
integration: regularized by properly formulating a high-energy
factorization scheme, avoiding double counting of gluons.

Convenient (but not unique) choice of factorization scheme:

only gluons with k+ < k+f included into the shockwave field
A of the target

other gluons, with k+ > k+f : kept into the NLO impact factor

see e.g. Balitsky, Chirilli (2007)
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High energy factorization and Leading Logs

Available range for the evolution of the target

The presence of the target sets a physical lower bound on the k+

of the gluons and on the factorization scale k+f :

k+f ≥ k+min =
Q2

0

2x0P−
=

xBj Q
2
0

x0 Q2
q+
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High energy factorization and Leading Logs

Available range for the evolution of the target

The presence of the target sets a physical lower bound on the k+

of the gluons and on the factorization scale k+f :

k+f ≥ k+min =
Q2

0

2x0P−
=

xBj Q
2
0

x0 Q2
q+

⇒ Range for LL evolution from the target to the factorization
scale:

Y+
f = log

(

k+f
k+min

)

= log

(

x0Q
2 k+f

xBj Q
2
0 q

+

)

→ Not a rapidity range, and not log(x0/xBj ) either, beyond LL
accuracy.
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High energy factorization and Leading Logs

LL BK evolution for 〈S01〉

In the impact factor: interpret 〈S01〉 as the non-perturbative
un-evolved 〈S01〉0, and accordingly put a lower cut-off on the z2
integration at k+min/q

+.

Then, make use of the integrated version

1− 〈S01〉0 = 1− 〈S01〉Y+
f
− ᾱ

∫ Y+
f

0 dY+
2

∫

d
2
x2

2π
x201

x202 x
2
21

〈S01−S02S21〉Y+
2

of the LL BK equation

∂Y+ 〈S01〉Y+ = ᾱ
∫

d
2
x2

2π
x201

x202 x
2
21

〈S02S21−S01〉Y+
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High energy factorization and Leading Logs

Final result for inclusive DIS at NLO/LL accuracy

σ
γ
T ,L=2 2Nc αem

(2π)2

∑

f e
2
f

∫

d
2
x0

∫

d
2
x1

∫ 1
0 dz1

{

ILO
T ,L(x0,x1,1−z1,z1)

×

[

1−〈S01〉Y+
f
−ᾱ

∫ Y+
f

0 dY+
2

∫ d
2
x2

2π

x201
x2
02

x2
21

〈S01−S02S21〉Y+
2

]

+ᾱ
∫ 1−z1

k+
min

/q+

dz2
z2

∫ d
2
x2

2π
INLO
T ,L (x0,x1,x2,z1,z2) 〈S01−S02 S21〉Y+

2

}

The LL contributions (ᾱY+
f )n essentially cancel between the last

two terms, and remain only in 〈S01〉Y+
f
.
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Improving the treatment of kinematics in the BK equation

Incorrect subtraction of Leading Logs

Low z2 contribution to σγ

L at NLO (for z2 ≪ z1, 1−z1):

∼ ᾱ
dz2

z2

∫

d
2
x2

2π

x201
x202 x

2
21

K
2
0(QX3) 〈S01 − S02 S21〉Y+

2

Low z2 term used to subtract LL from σγ

L at NLO:

∼ ᾱ
dz2

z2
K

2
0

(

Q

√

z1(1−z1)x201

)
∫

d
2
x2

2π

x201
x202 x

2
21

〈S01 − S02 S21〉Y+
2

At low z2: X
2
3 ≃ z1(1−z1)x

2
01 in most of the available range for x2

But mismatch in the regime z1(1−z1)x
2
01 ≪ z2x

2
02 ≃ z2x

2
12, where

X 2
3 ≃ z2x

2
02 ≃ z2x

2
12.
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Improving the treatment of kinematics in the BK equation

Incorrect subtraction of Leading Logs

In the regime z2 ≪ z1, 1−z1 and z1(1−z1)x
2
01 ≪ z2x

2
02 ≃ z2x

2
12:

K0(QX3) is exponentially smaller than K0

(

Q

√

z1(1−z1)x201

)

and no contribution to leading logs is present in σγ

L at NLO.

⇒ More leading logs subtracted with the BK equation than
present in σγ

L (and σγ

T ).

Incorrect treatment in a kinematical regime parametrically narrow,
but quantitatively important:

spoils the DGLAP DLL limit.

LL subtraction with the standard BK equation spoils the
suppression of Fock states with too large formation time
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Improving the treatment of kinematics in the BK equation

Link with the problems of NLL BK and BFKL

BK and BFKL usually derived in strict multi-Regge kinematics:

strong ordering in k+ (or k−, or rapidity)

all k’s (or dipole sizes) of the same order

and kinematical approximations are performed accordingly.
For example, in light-front perturbation theory each energy
denominator is approximated by the contribution of the last
emitted gluon.
→ momentum space analog of the approximation
X 2
3 ≃ z1(1−z1)x

2
01 in the NLO impact factor.

Problem: unrestricted integration over k or x2 in BFKL and BK
⇒ Second assumption not consistent!

This is the origin of the largest NLL, NNLL and so on corrections
in the BFKL and BK equations.
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Improving the treatment of kinematics in the BK equation

Link with the problems of NLL BK and BFKL

Strict ordering of the gluons both in k+ and k− simultaneously:

self-consistent and sufficient condition for the kinematical
approximation of energy denominators

sufficient condition to have ordering in the formation time of
the gluonic fluctuations of the projectile

High-energy factorization automatically implies ordering wrt. its
factorization variable k+, but not wrt. k−.

In mixed space, k− ordering ⇔ z1(1−z1)x
2
01 ≫ z2x

2
02 and

z1(1−z1)x
2
01 ≫ z2x

2
12

Need to impose by hand the missing k− ordering in the equation
via a kinematical constraint.
Ciafaloni (1988)
Kwieciński, Martin, Sutton (1996)

Andersson, Gustafson, Kharraziha, Samuelsson (1996)
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Improving the treatment of kinematics in the BK equation

Corrected real gluon emission kernel

Real emission contribution to the usual LL:

ᾱ
dz2

z2

d
2
x2

2π

x201
x202x

2
21

〈

S02 S21−
1

N2
c

S01

〉

Y+
2

Kinematical constraint: forbid gluon emission in the regime
z1(1−z1)x

2
01 ≪ z2x

2
02 ≃ z2 x

2
12

⇒ Multiply the real contribution by
θ
(

z1(1−z1) x
2
01−z2 min(x202, x

2
21)

)

Same general idea as in the previous study in mixed space:
Motyka, Staśto (2009)

However: inappropriate treatment of virtual corrections there.
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Improving the treatment of kinematics in the BK equation

Calculating virtual corrections from unitarity

Assume the kinematical constraint to preserve the probabilistic
interpretation of the parton cascade.
Evolution of 〈S01〉 over a finite range Y+

f = log(k+f /k+min):

〈S01〉Y+
f

= 〈S01〉0 D01(Y
+
f ) + ᾱ

∫ Y+
f

0
dY+

2 D01(Y
+
f −Y+

2 )

×
∫

d
2
x2

2π

x201
x202x

2
21

θ

(

Y+
f −Y+

2 −log

(

min(x202, x
2
21)

x201

))

×
〈

S02 S21−
1

N2
c

S01

〉

Y+
2

with the probability D01(Y
+) of no splitting for the dipole 01 in

the range Y+.
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Improving the treatment of kinematics in the BK equation

Calculating virtual corrections from unitarity

In the vacuum (absence of target), S01 = S02 = S21 = 1.
→ equation determining D01(Y

+).
Solution:

D01(Y
+) = exp

[

−ᾱ
2CF

Nc

∫

d
2
x2

2π

x201
x202x

2
21

(

Y+−∆012

)

θ
(

Y+−∆012

)

]

with the notation

∆012 = max

{

0, log

(

min(x202, x
2
21)

x201

)}

Typical behavior:

∆012 = 0 for x202 ≪ x201 or x221 ≪ x201

∆012 ∼ log

(

x202
x201

)

∼ log

(

x221
x201

)

for x201 ≪ x202 ∼ x221
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Improving the treatment of kinematics in the BK equation

Kinematically constrained BK equation (kcBK)

Rewriting the new evolution equation as a differential equation and
discarding irrelevant terms explicitly of order NLL:

∂Y+
f
〈S01〉Y+

f
= ᾱ

∫

d
2
x2

2π
x201

x202 x
2
21
θ(Y+

f −∆012)

×
{

〈

S02S21−
1

N2
c

S01

〉

Y+
f
−∆012

−
(

1− 1

N2
c

)

〈S01〉Y+
f

}

G.B., in preparation

Only gluon emission at large transverse distance is modified, and
regime of very large transverse distances completely removed.

This should slow down significantly the BK evolution!

However, the range for evolution Y+
f = log

(

x0 Q
2 k+

f

xBj Q
2
0 q

+

)

can be

larger than the usually assumed log
(

x0
xBj

)

.
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Improving the treatment of kinematics in the BK equation

Kinematically constrained BK equation (kcBK)

∂Y+
f
〈S01〉Y+

f
= ᾱ

∫

d
2
x2

2π
x201

x202 x
2
21
θ(Y+

f −∆012)

×
{

〈

S02S21−
1

N2
c

S01

〉

Y+
f
−∆012

−
(

1− 1

N2
c

)

〈S01〉Y+
f

}

That modification of the LL BK equation resums precisely the
largest and most pathological corrections appearing in the known
NLL BK equation.
⇒ Necessary step towards a stable and reliable version of the NLL
BK equation.

When regularizing the NLO DIS impact factors and removing the
LL contribution using the kcBK equation:
fully correct subtraction the LL contributions, with no mismatch in
the collinear regime, by contrast to the standard LL BK case.
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Conclusions

Conclusions

1 Explicit expression for NLO DIS impact factors provides one of
the ways to understand kinematical issues in the BK equation

2 The same modification (kcBK) of the LL BK equation allows
to

resum the largest and unphysical corrections to BK of order
NLL and beyond

restore the correct DGLAP DLL limit in the BK equation and
impact factors

restore ordering in the formation time of fluctuations along the
evolution
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Conclusions

Outlook

Kinematical improvement: can be trivially combined with
running coupling effects.

⇒ Kinematically constrained running coupling BK: new
standard for future phenomenological studies.

Missing step towards a fully stable NLL BK equation:

understanding and resummation of the finite x part of the
DGLAP evolution in mixed space, both in the collinear and
anti-collinear limits.

kinematical constraint for the JIMWLK equation?
for the evolution equation of quadrupoles?
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