Radiative energy loss in absorptive media

Marcus Bluhm

Subotech

Laboratoire SUBATECH, Nantes

with P. B. Gossiaux, T. Gousset, J. Aichelin

Heavy Ion Collisions in the LHC Era - Rencontres du Vietnam Quy Nhon, Vietnam, July 15-21, 2012

> based on: MB, P. B. Gossiaux, J. Aichelin, arXiv:1106.2856 MB, P. B. Gossiaux, J. Aichelin, arXiv:1201.1890 MB, P. B. Gossiaux, T. Gousset, J. Aichelin, arXiv:1204.2469

Motivation - Experimental observations

- RHIC and LHC: strong suppression of hadron spectra
 - \rightarrow medium is opaque for coloured excitations (large in-medium energy loss)
- influence of medium (nearly) same for different parton masses

Sensitivity of observables in nuclear collisions

in-medium energy loss - some features:

- $\Delta E_{rad} \gg \Delta E_{coll}$ for large *E* (for light partons)
- less radiative energy loss for heavy quarks (dead cone effect)

Outline

- Introduction
 - \rightarrow formation time (length) of bremsstrahlung
- Damping of photon radiation in an absorptive QED plasma
- Damping of gluon radiation in the absorptive QGP
- Conclusions

Intro - Formation of bremsstrahlung in QCD

- formation of gluon radiation is a *quantum phenomenon* (*quantum decoherence* between emitting parton and radiated gluon takes time)
- ► estimate for formation time: their transverse separation is of order of gluon-transverse wavelength, τ_f ≃ ω/k² ≃ 1/ωθ²

► in case $\tau_f \gg \lambda$ (parton mean free path in medium), $N_{coh} \simeq \tau_f / \lambda$ scatterings contribute coherently to formation of radiation

Intro - Formation of bremsstrahlung in QCD

- ► gluon rescatterings alter the formation time to $\tau'_f \simeq \sqrt{\omega/\hat{q}}$ because $\langle k_{\perp}^2 \rangle \simeq \hat{q}\tau_f$ with $\hat{q} \sim \mu^2/\lambda$ (quenching parameter)
- consequence: radiation spectrum reduced compared with GB-spectrum from independent, successive scatterings for larger ω (LPM effect)

 gluon dispersion relation that is not *light-like* (e.g. due to medium polarization) alters the probability of bremsstrahlung production at soft ω (TM effect analogon)

Kampfer+Pavlenko (2000), Djordjevic+Gyulassy(2003)

Intro - Formation of bremsstrahlung in QCD

- ► gluon rescatterings alter the formation time to $\tau'_f \simeq \sqrt{\omega/\hat{q}}$ because $\langle k_{\perp}^2 \rangle \simeq \hat{q}\tau_f$ with $\hat{q} \sim \mu^2/\lambda$ (quenching parameter)
- consequence: radiation spectrum reduced compared with GB-spectrum from independent, successive scatterings for larger ω (LPM effect)

 gluon dispersion relation that is not *light-like* (e.g. due to medium polarization) alters the probability of bremsstrahlung production at soft ω (TM effect analogon)

Kampfer+Pavlenko (2000), Djordjevic+Gyulassy(2003)

ightarrow What is influence of damping mechanisms?

Detour: Absorptive QED-plasma

- → investigation of photon damping effects on the energy loss of a traversing charge with energy *E* for $\omega = xE \ll E$:
 - complex medium index of refraction $n(\omega)^2 = 1 \frac{m^2}{\omega^2} + \frac{2i\Gamma}{\omega}$
 - photons are time-like with in-medium mass m and width Γ
 - mechanical work \rightarrow energy loss spectrum:

$$-\frac{dW}{d\omega} = -\operatorname{Re}\left(i\frac{\alpha}{\pi}\int dt\int dt'\omega e^{-i\omega(t-t')}\mathcal{A}(t,t')\right) \text{ with}$$
$$\mathcal{A}(t,t') = \left\{\vec{v}(t)\vec{v}(t') + \frac{(\nabla_{\Delta r}\vec{v}(t))(\nabla_{\Delta r}\vec{v}(t'))}{\omega^2 n(\omega)^2}\right\}\frac{e^{i\omega|n_r|\Delta r}e^{-\omega|n_i|\Delta r}}{\Delta r}$$

- infinite, isotropic, absorptive e-m plasma and charge created in remote past
- ► essential → exponential damping factor
- ► for $\vec{v}(t)$ as in Landau's work and $n_r = 1$, $n_i = 0$ spectrum reduced to LPM radiation spectrum

Detour: Absorptive QED-plasma

- → investigation of photon damping effects on the energy loss of a traversing charge with energy *E* for $\omega = xE \ll E$:
 - for $\vec{v}(t)$ as in Landau's work

suppression of spectrum due to finite m and/or Γ

Detour: Absorptive QED-plasma

- → investigation of photon damping effects on the energy loss of a traversing charge with energy *E* for $\omega = xE \ll E$:
 - estimate for formation time t_f : phase in spectrum ~ 1
 - difference to formation time in QCD: $t'_f \simeq \sqrt{E/(\hat{q}x)}$ \rightarrow LPM-suppression of spectrum in soft ω -region
 - photon damping \rightarrow competing damping time scale $t_d \sim 1/\Gamma$

• spectra scaling (
$$t_{BH} \simeq E^2/(\omega M^2)$$
):

$$\frac{dI}{dI_{BH}} \simeq \frac{\min(t_{\rm f}, t_d)}{t_{BH}}$$

Absorptive QCD plasma: Damping of gluon radiation

- Is it possible that damping mechanisms influence the formation of gluon radiation itself?
- assume gluons to be time-like with in-medium effective mass m_g and width (associated with damping rate Γ)
- damping mechanisms: qq
 q
 -pair creation or secondary bremsstrahlung
- higher-order effects in pQCD: Γ ~ g⁴T ln(1/g)

- influence on the spectrum?
- formation influenced if associated damping time t_d ~ 1/Γ ≲ t_f

Gluon formation time

cf. P. Arnold Phys. Rev. D **79** (2009) 065025 estimate for formation time t_f from *off-shellness* of intermediate particle line

quantum mechanical duration of off-shell "state" \rightarrow condition for t_f :

$$t_f^2 \frac{(1-x)\hat{q}}{2xE} + t_f \frac{[x^2 m_s^2 + m_g^2 (1-x)]}{2x(1-x)E} \simeq 1$$

Gluon formation time

cf. P. Arnold Phys. Rev. D **79** (2009) 065025 estimate for formation time t_f from *off-shellness* of intermediate particle line

quantum mechanical duration of off-shell "state" \rightarrow condition for t_f :

$$t_f^2 \frac{(1-x)\hat{q}}{2xE} + t_f \frac{[x^2 m_s^2 + m_g^2 (1-x)]}{2x(1-x)E} \simeq 1$$

- t_f increases with E
- t_f decreases with ĝ

Gluon formation time - Qualitative study

Qualitative behaviour can be discussed via an approximate solution of condition equation

Gluon formation time - Qualitative study

Qualitative behaviour can be discussed via an approximate solution of condition equation

and assuming

 $t_f = \min(t_f^{(s)}, t_f^{(m)})$

► LPM-suppression for $x \ge x_{LPM} \sim m_g^4 / (\hat{q}E)$ when $t_f \ge t_\lambda$

Influence of damping on the radiation spectrum

exploit spectra scaling $\frac{dI}{dl_{GB}} \simeq \frac{\min(t_f, t_d)}{t_{GB}}$, $t_{GB} \simeq \frac{\omega}{m_g^2}$ negligible damping:

- shows influence of multiple, elastic scatterings (LPM effect) and finite parton mass
- LPM-suppression for $m_g^4/\hat{q}E \sim x_{LPM} \le x \le x_c \sim (\hat{q}E/m_s^4)^{1/3}$

Influence of damping on the radiation spectrum

exploit spectra scaling $\frac{dI}{dI_{GB}} \simeq \frac{\min(t_f, t_d)}{t_{GB}}$, $t_{GB} \simeq \frac{\omega}{m_g^2}$ intermediate damping:

- development of a NEW additional regime due to gluon damping between x₃ ~ q̂/(Γ²E) and x₄ ~ ΓE/m_s²
- reduction stronger than due to LPM effect

Influence of damping on the radiation spectrum

exploit spectra scaling $\frac{dI}{dI_{GB}} \simeq \frac{\min(t_f, t_d)}{t_{GB}}$, $t_{GB} \simeq \frac{\omega}{m_g^2}$ large damping:

- between x₅ ~ m²_g/(ΓE) and x₄ ~ ΓE/m²_s
- reduction stronger than due to LPM effect
- for fixed E, increasing Γ influences shape of the spectrum

• for fixed Γ , effect should show up with increasing $\gamma = E/m_s$

• for fixed Γ , effect should show up with increasing $\gamma = E/m_s$

• for fixed Γ , effect should show up with increasing $\gamma = E/m_s$

• for fixed Γ , effect should show up with increasing $\gamma = E/m_s$

both increasing E and Γ make effect more pronounced

• for fixed Γ , effect should show up with increasing $\gamma = E/m_s$

both increasing E and Γ make effect more pronounced

Parton mass dependence

negligible damping

 $E=40~{\rm GeV},~m_c=1.3~{\rm GeV},~m_b=4.2~{\rm GeV},~\hat{q}=2~{\rm GeV}^2/{\rm fm},~m_g=0.8~{\rm GeV}$

- at small x, parton-mass independent
- clear difference at intermediate and large x

Parton mass dependence

damping rate $\Gamma = 0.2 \text{ GeV}$

spectrum parton-mass independent in sizeable x-region

Parton mass dependence

damping rate $\Gamma = 0.4 \text{ GeV}$

spectrum parton-mass independent in almost entire x-region

Conclusions

- academic study: suppression of energy loss spectrum of charge produced in remote past in an absorptive, infinite e-m plasma
- qualitative discussion of possible effects of gluon damping on radiative energy loss of partons
 - \rightarrow development of new, mass-independent scale t_d
 - \rightarrow reduction of radiation spectrum stronger than in LPM-regime
 - ightarrow region of effect increases with Γ and/or E
 - \rightarrow with increasing Γ (and/or *E*), radiation spectra become more and more parton-mass independent
- finite size-effects !?
- gluon damping effect on particles produced in the plasma !?
- ω -dependence in Γ !?