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QCD Phase Diagram
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How CP In QCD started
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Fig. 8. The phase transition line in the cases (1) and (II).
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Where is CP, If any?
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CP = 2nd order phase transition, but...

Correlation Length

CP = ‘ Divergence of Fluctuation
Specific Heat ?

2nd Order Phase Transition Point

([ . ‘
If expansion
IS adiabatic

even if the system goes right through
HADRON the critical point...

There is no conservation law that slows down the change of those quantities !
|:> Subject to Final State Interactions
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Fluctuations: Higher Moments

m Recently higher moments have attracted quite a lot of attention

> (Roughly) Two Reasons

- Larger critical exponents around CP (=A&?) Stephanov (2008)

- Sign change across the phase transition (crossover) line
Asakawa, Ejiri, Kitazawa (2009)

> Next Slide
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Odd Power Fluctuation Moments

m Fluctuations of Conserved Charges: not subject to final state interactions

- Usually even power fluctuations such as <(5Q)2> have been considered

- Usual Fluctuations such as <(5Q)2> . positive definite

I:> Absolute values carry information of states (D-measure)

Asakawa, Heinz, Muller, Jeon, Koch

On the other hand,

v Odd power fluctuations : NOT positive definite
- In general, do not vanish (exception, (5A) )
- Sign also carries information of states
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Physical Meaning of 3rd Fluc. Moment

A& : Baryon number susceptibility

In general, has a peak along phase transition

:> OXs changes the sign at QCD
Oy phase boundary !

m In the language of fluctuation moments:
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M. Kitazawa, S. Ejiri, and M.A., 2009

more information than
usual fluctuation
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Comparison of Various Moments

2-flavor NJL
with standard
parameters
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- Different moments have different regions with negative moments

By comparing the signs of various moments,
possible to pin down the origin of moments

- Negative m3(EEE) region extends to T-axis (in this particular model)
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Recent Progress: Proton Number Cumulants

- Proton Number Fluctuation has been attracting a lot of interest
because it can be observed experimentally

- Proton Number Fluctuation diverges at CP Hatta and Stephanov, 2003

- Comparisons of experimental results and lattice predictions
have been made (e.g. Gupta et al., Science 2011)
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Experiment: Net Proton
Theory: Net Baryon |s this harmless?
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Protons and Baryons

The question here is how these are related to each other:

4 ) (" )

(6N,)') |4 ((SNo)’

N C) % ¢

o

In free nucleon gas in equilibrium,

<(5NB)”>C =2<(5Np)”>

Otherwise, in general,

<(5NB)”>C - 2<(5Np)”>
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Freezeouts

- Net proton number may be considered as
an alternative of net baryon number

f—
A
=

Deconfinement

- Chiral Restoration - Chemical freezeout is close to the
; \ crossover, and (anti)proton number
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Exception

If there are low mass resonances, this exception happens

In our case at hand, A resonances

p,n ~ P p,n - 3/2
A(1232)
T —7 ~ T ['~1.8 [fm]

Cross section

A t ; 4
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How long Is the mean free time?

ratio of cross sections
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Nucleon Isospin Randomization in Pion Gas
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Production of Additional Fluctuation

1. Original
((6NN)")

Ny
Ny, N,
((6Np)?)
2. Additional (from tN—A—7N)

m In, general, fluctuations of Ny and N, are different

m Additional N, fluctuations are created by (thermal) pions
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Dilute Nucleon Approximation
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Nucleons have no correlations
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+ Ignore NN collisions
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Probabillity Distribution
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Probabillity Distribution

fPi(NIO’Nn’Nﬁ’Nﬁ): P(N&net)’NSOt)’Np’Nﬁ?

Ne =N +N =N —-N;

(tot) __
g N _NerNnJrNﬁ+Nﬁ

In the dilute nucleon approximation, Ny™Y and Ny(Y are conserved, i.e.
N, + N and N+ N, are conserved separately

When N+ N =N and N+ N;= Ny are fixed
and hadron phase is long enough compared to the mean free

time of (anti)nucleons, the final state (anti)proton distribution is given
by the binomial distribution

B(N,;Ny) (B(N,;Ny))
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Probabillity Distribution

m As a result, the final state distribution is factorized as follows:

P (NN NN = F(NS NED)B(N N )B(N ;N )

F(Nlilnet)’ ng[ot)) _ Z P(nglnet)’ ngltot)’ Np, Nb)

N, N5

P(N,,N,,N_,N)=P(NJ* N{ N ,N))
=P'(Ny,Ng,N_,N)

The two variable function “F” includes the initial information (correlation)

This form of Ps enables to relate proton moments and nucleon moments
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Proton and Nucleon Moments

1. Original
((6NN)")

((6Np)™)

2. Additional (from tN—A—nN)
((ong ) )= {(ange )+ (nie)
o) =sf w2z

for isospin symmetric matter

- For free nucleon gas

((ong)) =5 (ene )
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Proton and Nucleon Moments

Similarly,

=Ny |

~

[<5N4>C ~((oN) >—3<(§N)2>2}
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Time Scales

hadronization

\—Y—}

z-hadron

T| : time scale to realize isospin randomization

Thadron : time scale of hadron phase duration

Thadron <:| result of state-of-art hydro + cascade calculation
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Result of Hydro+Cascade Calculation

Freezeout time distribution
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FIG. 22. (Color cnline) Freeze-out time distribution of baryons

for hydro+decay (open symbols, above) and hydro+UrQMD (solid
symbols, below) at midrapidity.

praviding u 1 an estimate on the lifetime of the hadronie
phase around 10-20 fi/e. Note that this estimate is subject to . —~

the same systematic uncertainties discussed previously in the T h a.d ron ' 1 O 20 fm
context of the overall lifetime of the system.

Nonaka and Bass, PRC 2007 T, < T hadron isospin: randomized
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Ny or Ng: Strange Baryon Contribution

Strange baryon contribution is mainly from A and £

Branching Ratios: Decay modes:

A |ma = 1116[MeV] - =+ 36%
0
20 g, ~ 1190[MeV] T e prm 52%

T L s n+a" 48%
_ﬁp_l_ﬂ- 64%

A+X go to p and n with approximately ZO A

equal probabilities, 1:1 L on+aY 36%
(Anti)protons from these decays can be Y n-—+m
incorporated into the binomial distribution,

then, N\y=>Ng
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Au+Au Collisions
0.4<pT<0.8 {GeV/c)
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O URCMD

Future Cntical Point Search
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Theoretical & Experimental Questions

Isn’t the effect of A included in theoretical calculations?

ol T 1
P Q= 1 _p|—, &
TC T ) TC T T,

STAR, PRL(2010)

Final State Interaction

AMPT, URQMD

YES

HRG, THERMINATOR,
HIJING

NO

But none of them includes effects of the critical point
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Theoretical & Experimental Questions

Lattice URQMD

O 19.6 GeV
62.4 GeV
200 GeV

(HIJING+GEANT) - HUUING <0

detector effeiciency = Poissonian
Ko? — 1

LROMD:  oNet-Baryon OA N, W Decay DA N, W/O Decay (C)
AMPT * AMPT(SM)  HIING ¥ THERMINATOR

100 200 300 400
Average Number of Participants (N,

STAR PRL(2010)
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Summary

m Conserved Charges and Higher Moments:

- Third Fluctuation Moments of Conserved Charges
take negative values in regions on the FAR SIDE of Phase Transition

(more information!)

m Proton Number Cumulants and Baryon Number Ones:

« Proton Number Cumulants are not frozen at chemical freezeout

- Mean Free Time of Protons in hadron phase is very short
owing to A formation and isospin is randomized

- Final p, p, n, n distributions are factorized (NOT an assumption!)

- This makes it possible to relate the initial baryon number cumulants
and final proton number cumulants, and vice versa

- Extension to isospin nonsymmetric case is straightforward,

and it turned out its effect is very weak (kitazawa and M.A., to be published)
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