Introduction 0000000 Perturbation Theory 00000

Resummations

Conclusion, Outlook

• • = • • = •

Resummations in the Bloch-Nordsieck Model

Mati Péter Jakovác Antal

Budapest University of Technology and Economics, Faculty of Natural Sciences

Introduction	Perturbation Theory	Resummations	Conclusion, Outlook
0000000	00000	0000000000	

Contents

1 Introduction

- Motivation
- The Bloch-Nordsieck Model
- The Exact Result

2 Perturbation Theory

One-loop Correction

3 Resummations

- 2PI Resummation
- Exact Resummation

4 Conclusion, Outlook

Introduction	Perturbation Theory	Resummations	Conclusion, Outlook
● ○ ○○○○○			
Motivation			

Fermion propagation in an external field \rightarrow soft gauge bosons emitted, absorbed (gluons, photons, etc...)

What's the dressed propagator? In general hard to answer...

Introduction	Perturbation Theory	Resummations	Conclusion, Outlook
● ○ ○○○○○			
Motivation			

Fermion propagation in an external field \rightarrow soft gauge bosons emitted, absorbed (gluons, photons, etc...)

What's the dressed propagator? In general hard to answer...

Except for the B-N model.

Introduction	Perturbation Theory	Resummations	Conclusion, Outlook
Motivation			
- Bloch-I	Nordsieck Model: <i>solutio</i>	n by path-integral	
	EXA	АСТ	
	Difficult to generalize 1	to other guage theor $_{ m au}$	ies
	PERTURBATI	DN THEORY:	
	tree diagram	ı	
	■ one-loop co	rrection	
	IR problem at	higher orders	
	1		
	RESUMM	ATIONS:	
	2PI resumm	ation	
	Exact resum	imation (D-S)	
	Hopefully can	be generalized	

- A method to treat *infrared physics*

э

Introduction 000000	Perturbation Theory 00000	Resummations	Conclusion, Outlook
The Bloch-Nordsieck Model			
The (Toy)Mo	del		

QED Lagrangian

$$\mathcal{L} = \bar{\psi} \left(i \partial \!\!\!/ - m - e A \!\!\!/ \right) \psi - \frac{1}{4} F_{\mu\nu} F^{\mu\nu}$$

$$\bullet F^{\mu\nu} = \partial^{\mu}A^{\nu} - \partial^{\nu}A^{\mu}$$

$$\bullet \ \not \partial = \gamma_{\mu} \partial^{\mu}$$

■ *m*: fermion mass, *e*: coupling constant

• • = • • = •

Introduction	Perturbation Theory 00000	Resummations 0000000000	Conclusion, Outlook
The Bloch-Nordsieck Model			
The (Toy)Mod	lel		

QED Lagrangian

$$\mathcal{L} = \bar{\psi} \left(i \partial \!\!\!/ - m - e A \!\!\!/ \right) \psi - \frac{1}{4} F_{\mu\nu} F^{\mu\nu}$$

$$\bullet F^{\mu\nu} = \partial^{\mu}A^{\nu} - \partial^{\nu}A^{\mu}$$

$$\bullet \ \not \partial = \gamma_{\mu} \partial^{\mu}$$

■ *m*: fermion mass, *e*: coupling constant

₩

Bloch-Nordsieck Lagrangian

$$\mathcal{L} = \psi^{\dagger} \mathbf{u}^{0} \left(i \mathbf{u}^{\mu} \partial_{\mu} - m - \mathbf{e} \mathbf{u}^{\mu} A_{\mu} \right) \psi - \frac{1}{4} F_{\mu\nu} F^{\mu\nu}$$

$$lacksymbol{u}$$
 $oldsymbol{u}^{\mu}\in M^4$ és $u_{\mu}u^{\mu}=1$

伺 ト イヨ ト イヨト

Introduction

Perturbation Theory

Resummations 000000000

Conclusion, Outlook

4 3 5 4 3 5

The Bloch-Nordsieck Model

The Free Fermion Green's Function

The partial differential equation:

$$(iu^{\mu}\partial_{\mu}-m)G_0(x-y)=\delta(x-y)$$

The propagator in momentum space:

$$\hat{G}_0(p)=rac{1}{u_\mu p^\mu -m+i\epsilon}$$

- Retarded: $G_0(x y) = 0$, if $x^0 < y^0 \rightarrow \nexists$ antifermion
- Closed fermion loops are cancelled!

Closed fermion loops

Introduction

Perturbation Theory

Resummations

Conclusion, Outlook

∃ ► < ∃ ►</p>

The Bloch-Nordsieck Model

Fermion Moving In Classical Field

The partial differential equation:

$$[u^{\mu}(i\partial_{\mu}+eA_{\mu}(x))-m]G(x,y|A)=\delta(x-y)$$

Solution:

$$G(x,y|A) = i\frac{1}{2\pi^4}\int_0^\infty d\nu \int dp \exp\{-ip(x-y) - i\nu(up-m+i\epsilon) + iK(\nu|A)\}$$

Where:
$$K = \frac{e}{(2\pi)^2} \int dk (uA(k)) e^{-ikx} \int_{0}^{\nu} d\nu' e^{i(uk)\nu'}$$
 és $\nu \in \mathbb{R}_+$ (linear in A)

The gauge field is separated!

Introduction	Perturbation Theory	Resummations	Conclusion, Outlook
0000000	00000	0000000000	
The Bloch-Nordsieck Model			

The "Dressed" Fermion Propagator

Connection between the two Green's function *with functional averaging*:

$$G(x,y) = \frac{\int G(x,y|A) \langle T \exp\left\{ie \int \bar{\psi}(z)A(z)\psi(z)dz\right\} \rangle_{F_0} \mathcal{D}A}{\int \langle T \exp\left\{ie \int \bar{\psi}(z)A(z)\psi(z)dz\right\} \rangle_{F_0} \mathcal{D}A}$$

Bloch-Nordsieck

 $\exists \text{ antifermion} \to \langle T \exp\left\{ie \int \bar{\psi}(z)A(z)\psi(z)dz\right\}\rangle_{F_0} = 1$ $= G(x,y) = \int G(x,y|A)\mathcal{D}A$ $= \hat{G}(p) = i \int_{0}^{\infty} e^{-i\nu(up-m+i\epsilon)}d\nu \int e^{iK(\nu|A)}\mathcal{D}A \text{ (Gaussian type)}$

Introduction ○○○○○○●	Perturbation Theory 00000	Resummations 0000000000	Conclusion, Outlook
The Exact Result			
The Evact	Recult		

$$\hat{G}(p)=rac{1}{(up)-m}\Big(rac{(up)}{m}-1\Big)^{-rac{e^2(3-\xi)}{8\pi^2}}$$
 $(\hat{G}\sim(up-m)^\gamma$ power law)

$$\left(\frac{(up)}{m} - 1\right)^{-\frac{e^2(3-\xi)}{8\pi^2}} \approx 1 - \frac{e^2}{4\pi^2} (3-\xi) \ln\left(\frac{(up)}{m} - 1\right) + \dots$$

Where ξ is the gauge fixing parameter

Divergencies:

- UV no
- IR ($|up| \approx m$) YES \longrightarrow photon accumulation on the mass shell!

Bogoliubov N.N., Shirkov D.V., Introduction to the theory of quantized fields (Wiley, 1980)

Introduction 0000000	Perturbation Theory ●0000	Resummations 00000000000	Conclusion, Outlook
One-loop Correction			
Perturbativ	e Theory, One-loo	p Integral	

Expand by the *coupling constant* of the interaction:

Image: A image: A

Introduction 0000000	Perturbation Theory 0●000	Resummations 0000000000	Conclusion, Outlook
One-loop Correction			
Fermion Self-e	energy		

1PI series:

Geometric series (Dyson): $i\hat{G}(p^{0}) = \frac{i}{G_{0}^{-1}-\Sigma}$ $\Sigma(p^{0}) = iI = e^{2\frac{p^{0}-m+i\epsilon}{4\pi^{2}}} \left[-\frac{2}{\delta} + \gamma_{E} - 1 - \frac{1}{2}\ln\pi + \ln\left(\frac{m-p^{0}-i\epsilon}{\lambda}\right)\right]$ $\Sigma = \Sigma_{fin} + \Sigma_{div} \quad (\delta \to 0)$

Introduction 0000000	Perturbation Theory 00●00	Resummations 00000000000	Conclusion, Outlook
One-loop Correction			
Renormaliz	ation		

$$\mathcal{L} = \psi^{\dagger} u^{0} \left(i u^{\mu} \partial_{\mu} - m - e u^{\mu} A_{\mu} \right) \psi - \frac{1}{4} F_{\mu\nu} F^{\mu\nu}$$

 $\mathcal{L} = \mathcal{L}_{r} + \mathcal{L}_{ct}$

$$\mathcal{L}_{r} = \psi^{\dagger} u^{0} i u^{\mu} \partial_{\mu} \psi - m_{r} \psi^{\dagger} u^{0} \psi - e_{r} \psi^{\dagger} u^{0} u^{\mu} A_{\mu} \psi < \infty$$
$$\mathcal{L}_{ct} = \delta Z \psi^{\dagger} u^{0} i u^{\mu} \partial_{\mu} \psi - \delta m \psi^{\dagger} u^{0} \psi - \delta e \psi^{\dagger} u^{0} u^{\mu} A_{\mu} \psi = \infty$$

$$m = m_r + \underbrace{\delta m}_{\infty}, \quad e = e_r + \underbrace{\delta e}_{\infty}, \quad Z = 1 + \underbrace{\delta Z}_{\infty}$$

・ロト ・回ト ・ヨト ・ヨト

2

Introduction 0000000	Perturbation Theory 00●00	Resummations 00000000000	Conclusion, Outlook
One-loop Correction			
Renormaliz	zation		

$$\mathcal{L} = \psi^{\dagger} u^{0} \left(i u^{\mu} \partial_{\mu} - m - e u^{\mu} A_{\mu} \right) \psi - \frac{1}{4} F_{\mu\nu} F^{\mu\nu} \mathcal{L} = \mathcal{L}_{r} + \mathcal{L}_{ct}$$

$$\mathcal{L}_{r} = \psi^{\dagger} u^{0} i u^{\mu} \partial_{\mu} \psi - m_{r} \psi^{\dagger} u^{0} \psi - e_{r} \psi^{\dagger} u^{0} u^{\mu} A_{\mu} \psi < \infty$$
$$\mathcal{L}_{ct} = \delta Z \psi^{\dagger} u^{0} i u^{\mu} \partial_{\mu} \psi - \delta m \psi^{\dagger} u^{0} \psi - \delta e \psi^{\dagger} u^{0} u^{\mu} A_{\mu} \psi = \infty$$

$$m = m_r + \underbrace{\delta m}_{\infty}, \quad e = e_r + \underbrace{\delta e}_{\infty}, \quad Z = 1 + \underbrace{\delta Z}_{\infty}$$

 $\hat{G}(p^0) = rac{1}{G_0^{-1}-\Sigma} \Rightarrow \hat{G}^r(p^0) = rac{1}{(1+\delta Z)p^0 - (m_r + \delta m) - (\Sigma_{fin} + \Sigma_{div})}$

$$\sum_{ct} = \delta Z p^0 - \delta m = \infty$$
$$\sum_{r} = \sum_{fin} + \sum_{div} - \sum_{ct} < \infty$$

|▲□ ▶ ▲ 臣 ▶ ▲ 臣 ▶ | 臣 | のへで

Introduction 0000000	Perturbation Theory 00●00	Resummations 00000000000	Conclusion, Outlook
One-loop Correction			
Renormaliz	zation		

$$\mathcal{L} = \psi^{\dagger} u^{0} \left(i u^{\mu} \partial_{\mu} - m - e u^{\mu} A_{\mu} \right) \psi - \frac{1}{4} F_{\mu\nu} F^{\mu\nu} \mathcal{L} = \mathcal{L}_{r} + \mathcal{L}_{ct}$$

$$\mathcal{L}_{r} = \psi^{\dagger} u^{0} i u^{\mu} \partial_{\mu} \psi - m_{r} \psi^{\dagger} u^{0} \psi - e_{r} \psi^{\dagger} u^{0} u^{\mu} A_{\mu} \psi < \infty$$
$$\mathcal{L}_{ct} = \delta Z \psi^{\dagger} u^{0} i u^{\mu} \partial_{\mu} \psi - \delta m \psi^{\dagger} u^{0} \psi - \delta e \psi^{\dagger} u^{0} u^{\mu} A_{\mu} \psi = \infty$$

$$m = m_r + \underbrace{\delta m}_{\infty}, \quad e = e_r + \underbrace{\delta e}_{\infty}, \quad Z = 1 + \underbrace{\delta Z}_{\infty}$$

 $\hat{G}(p^0) = rac{1}{G_0^{-1}-\Sigma} \Rightarrow \hat{G}^r(p^0) = rac{1}{(1+\delta Z)p^0 - (m_r + \delta m) - (\Sigma_{fin} + \Sigma_{div})}$

$$\sum_{ct} = \delta Z p^0 - \delta m = \infty$$
$$\sum_{r} = \sum_{fin} + \sum_{div} - \sum_{ct} < \infty$$

|▲□ ▶ ▲ 臣 ▶ ▲ 臣 ▶ | 臣 | のへで

Introduction	Perturbation Theory	Resummations	Conclusion, Outlook
	00000		
One-loop Correction			
Renormaliz	zation		

$$\mathcal{L} = \psi^{\dagger} u^{0} \left(i u^{\mu} \partial_{\mu} - m - e u^{\mu} A_{\mu} \right) \psi - \frac{1}{4} F_{\mu\nu} F^{\mu\nu} \mathcal{L} = \mathcal{L}_{r} + \mathcal{L}_{ct}$$

$$\mathcal{L}_{r} = \psi^{\dagger} u^{0} i u^{\mu} \partial_{\mu} \psi - m_{r} \psi^{\dagger} u^{0} \psi - e_{r} \psi^{\dagger} u^{0} u^{\mu} A_{\mu} \psi < \infty$$
$$\mathcal{L}_{ct} = \delta Z \psi^{\dagger} u^{0} i u^{\mu} \partial_{\mu} \psi - \delta m \psi^{\dagger} u^{0} \psi - \delta e \psi^{\dagger} u^{0} u^{\mu} A_{\mu} \psi = \infty$$

$$m = m_r + \underbrace{\delta m}_{\infty}, \quad e = e_r + \underbrace{\delta e}_{\infty}, \quad Z = 1 + \underbrace{\delta Z}_{\infty}$$

$$\hat{G}(p^0) = rac{1}{G_0^{-1}-\Sigma} \Rightarrow \hat{G}^r(p^0) = rac{1}{p^0-m_r-(\Sigma_{fin}+\Sigma_{div}-\Sigma_{ct})} = rac{1}{p^0-m_r-\Sigma_r}$$

$$\frac{\Sigma_{ct} = \delta Z p^0 - \delta m = \infty}{\Sigma_r = \Sigma_{fin} + \Sigma_{div} - \Sigma_{ct} < \infty}$$

Introduction 0000000	Perturbation Theory 000●0	Resummations 0000000000	Conclusion, Outlook
One-loop Correction			
Renormaliz	ation		

The counter temrs:

•
$$\delta Z = -e^2 \frac{1}{4\pi^2} \left(-\frac{2}{\delta} + \ln\left(\frac{m-p_t^0}{\lambda}\right) \right) = e^2 \frac{1}{2\pi^2} \frac{1}{\delta} + \text{Finite}(p_t^0)$$

•
$$\delta m = -e^2 \frac{m}{4\pi^2} \left(-\frac{2}{\delta} + \ln\left(\frac{m-p_t^0}{\lambda}\right) \right) = e^2 \frac{m}{2\pi^2} \frac{1}{\delta} + \text{Finite}(p_t^0)$$

$$\sum_r = \sum_{fin} + \sum_{div} - \sum_{ct} = -e^2 \frac{p^0 - m}{4\pi^2} \ln\left(\frac{m-p^0}{\lambda}\right)$$

□▶★□▶★□▶

æ

Introduction 0000000	Perturbation Theory 000●0	Resummations 00000000000	Conclusion, Outlook
One-loop Correction			
Renormaliz	ration		

The counter temrs:

$$\delta Z = -e^2 \frac{1}{4\pi^2} \left(-\frac{2}{\delta} + \ln\left(\frac{m-p_t^0}{\lambda}\right) \right) = e^2 \frac{1}{2\pi^2} \frac{1}{\delta} + \text{Finite}(p_t^0)$$

$$\delta m = -e^2 \frac{m}{4\pi^2} \left(-\frac{2}{\delta} + \ln\left(\frac{m-p_t^0}{\lambda}\right) \right) = e^2 \frac{m}{2\pi^2} \frac{1}{\delta} + \text{Finite}(p_t^0)$$

$$\Sigma_r = \Sigma_{fin} + \Sigma_{div} - \Sigma_{ct} = -e^2 \frac{p^0 - m}{4\pi^2} \ln\left(\frac{m - p^0}{\lambda}\right)$$

Exact
$$(\hat{G}^{ex})$$

$$\frac{1}{(up)-m} \left[1 - \frac{e^2}{8\pi^2} (3-\xi) \ln\left(\frac{(up)}{m} - 1\right) \right]$$

$$\xi = 1$$
One-loop correction $(\hat{G}^{1/oop})$

$$\frac{1}{p^0 - m - \Sigma_r} = \frac{1}{p^0 - m} \left[1 - \frac{e^2}{4\pi^2} \ln\left(\frac{p^0 - m}{\lambda}\right) \right]$$

Perturbation theory (1st order)

Introduction 0000000	Perturbation Theory	Resummations	Conclusion, Outlook
One-loop Correction			

-1

$$ReG_{ex}(x) = rac{1}{x^{(1+lpha/\pi)}}$$
 $ReG_{1-l}(x) \sim rac{1}{(lpha/\pi)x \log |x|}$

Where $x := p_0 - m$ and $\alpha = e^2/4\pi$

IR problems at the mass-shell \Rightarrow perturbation theory breaks down

Dealing with the IR limit: must reshuffle the perturbation series -> resummation

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Dealing with the IR limit: must reshuffle the perturbation series -> resummation

Antal Jakovác, Phys.Rev.D76:125004,2007. hep-ph/0612268

• • = • • = •

Introduction 0000000	Perturbation Theory 00000	Resummations 00000000000	Conclusion, Outlook
2PI Resummation			
The Analyt	tic Solution		

The self-energy:

$$\Sigma(p^0) = rac{-ie^2}{(2\pi)^4} \int dk^4 \; rac{G(p^0-k^0)}{k^2+i\epsilon}$$

With the spectral representation $G(p^0 - k^0) = \int_0^\infty d\omega \frac{\rho(\omega)}{p^0 - k^0 - \omega + i\epsilon}$

$$\begin{split} \Sigma(p^0) &= \int_0^\infty \frac{d\omega}{2\pi} \rho(\omega) \Sigma_{1-loop}(p^0,\omega) \\ & G(p^0) \sim \frac{1}{p^0 - m}, \text{ (for small } p^0) \\ & G(p^0) \sim \frac{1}{(p^0 - m)\sqrt{\ln(p^0 - m)}}, \text{ (for large } p^0) \end{split}$$

Introduction	
0000000	

Perturbation Theory

Resummations

Conclusion, Outlook

2PI Resummation

The Numerical Solution

The algorithm

Mati Péter, Jakovác Antal Resummations in the Bloch-Nordsieck Model

0.001

0.1

100

1000

10

ln(x)

Introduction 0000000	Perturbation Theory 00000	Resummations 0000●0000000	Conclusion, Outlook
2PI Resummation			
Results			

Perfect match with the analytic formulas

Mati Péter, Jakovác Antal Resummations in the Bloch-Nordsieck Model

Compared to the exact B-N solution... Bad news :-(

Mati Péter, Jakovác Antal Resummations in the Bloch-Nordsieck Model

Mati Péter, Jakovác Antal Resummations in the Bloch-Nordsieck Model

Perturbation Theory 00000

Resummations

Conclusion, Outlook

CAN WE DO BETTER??

Mati Péter, Jakovác Antal Resummations in the Bloch-Nordsieck Model

伺 ト イヨト イヨト

Perturbation Theory 00000

Resummations

Conclusion, Outlook

伺 ト イ ヨ ト イ ヨ ト

CAN WE DO BETTER?? YES, WE CAN!

(Keywords: Dyson-Schwinger + Ward-identities)

Introduction 0000000	Perturbation Theory 00000	Resummations ○○○○○○○●○○	Conclusion, Outlook
Exact Resummation			
Exact Resur	nmation		
"Modified	2PI'' = 2PI + vertex	corrections (exact Ward	-identities)
	$\nabla \Lambda a$	22mm	

•
$$G[\Sigma] \Leftrightarrow \Sigma[G]$$

• $k_0 \Gamma^0(p, p+k, k) = G^{-1}(p) - G^{-1}(p-k)$

Where $\Gamma^0(p, p + k, k)$ is the vertexfunction It has one-to-one correspondence to G(p)!

Self-consistent equations

Introduction 0000000	Perturbation Theory 00000	Resummations	Conclusion,	Outlool
Exact Resummation				

The self-energy:

$$\Sigma(p) = \frac{-ie^2}{(2\pi)^4} \int dk^4 \frac{1}{k^2 + i\epsilon} G(p-k) u_{\mu} \Gamma^{\mu}(k;p-k,p)$$

Since
$$\Gamma^0(p, p - k, k) = \frac{G^{-1}(p) - G^{-1}(p-k)}{k_0}$$

And u = (1, 0, 0, 0)

$$\Sigma(p^{0}) = \frac{-ie^{2}}{(2\pi)^{4}}G(p^{0})\int dk^{4}\frac{1}{k^{2}+i\epsilon}\frac{G(p^{0}-k^{0})}{k_{0}}$$

From this we can get

$$(p^0-m)G(p^0)=rac{lpha}{\pi}\int\limits_{p_0}^Md\omega G(\omega)$$

Its solution:

$$G(p^0) = \frac{const.}{(p^0 - m)^{(1 + \frac{\alpha}{\pi})}} \equiv \mathsf{B-N}$$

Introduction 0000000 Perturbation Theory

Resummations

Conclusion, Outlook

< ∃⇒

э

Exact Resummation

The Numerical Solution (possible!)

The algorithm

$$\begin{array}{c} \mathbf{I} \quad \mathrm{Im}\Sigma(\rho^{0}) = \frac{1}{4\pi^{2}} \int_{0}^{\rho^{0}} dk^{0} \ k^{0} \mathrm{Disc} \left(G(p^{0} - k^{0}) \frac{G^{-1}(p^{0}) - G^{-1}(p^{0} - k^{0})}{k^{0}} \right) \\ \\ \mathbf{2} \quad \mathrm{Re}\Sigma(p^{0}) = \mathcal{P} \frac{1}{\pi} \int_{-\infty}^{\infty} dq^{0} \ \frac{\mathrm{Im}\Sigma(q^{0})}{q^{0} - \rho^{0}} \ (\mathrm{Kramers}\operatorname{-Kronig}) \\ \\ \mathbf{3} \quad \mathrm{Re}\Sigma_{r}(p^{0}) = \mathrm{Re}\Sigma(p^{0}) - \left(\mathrm{Re}\Sigma(p^{0}_{t}) - \frac{\partial \mathrm{Re}\Sigma(p^{0}_{t})}{\partial \rho^{0}} \Big|_{p^{0}_{t}} (p^{0} - p^{0}_{t}) \right) \ (\text{renormalization}) \\ \\ \mathbf{4} \quad \rho^{FR}(p^{0}) = \frac{2\mathrm{Im}\Sigma_{r}}{\mathrm{Re}[G_{0}^{-1} - \Sigma_{r}]^{2} + [\mathrm{Im}\Sigma_{r}]^{2}} \ (\text{retarded spectral function}) \end{array}$$

Introduction 0000000	Perturbation Theory	Resummations 0000000000	Conclusion, Outlook
Conclusion:			

- Exact B-N solution:
 - power law: $ho_{eg} \sim (p-m)^\gamma$
 - hard to generalize to other gauge theories
- One-loop correction:
 - not power law
 - breaks down at IR (because of ln(x))
- 2PI resummation:
 - can deal with the IR div.
 - but poor approximation of the exact
- Exact resummation:
 - can deal with the IR div.
 - power law (exactly the B-N)
 - a new solution of the model
 - hopefully can be generalized

Resummations

Outlook, Literature

Outlook:

- adapting the method to QED (a possibly good approx.!)
- applications at ELI (strong fields vs. nonperurbative method)
- finite temperature calculation (automatic regularization of IR)
- examine bounded states (IR physics questions)
- adapting the method to QCD (???)

Literature:

R. J. Rivers Path Integral Methods in Quantum Field Theory, Cambridge University Press (1987)

Ashok Das Ectures on quantum field theory, World Scientific Publishing (2008))

Robint Ticciatti Quantum Field Theory For Mathematicians

Michael E. Peskin, Daniel V. Schroeder An introduction to Quantum Field Theory

Antal Jakovác Phys.Rev.D76:125004,2007. hep-ph/0612268

・ 同 ト ・ ヨ ト ・ ヨ ト

Introduction 0000000 Perturbation Theory 00000

Resummations

Conclusion, Outlook

• • = • • = •

THANK YOU FOR YOUR ATTENTION!

Mati Péter, Jakovác Antal Resummations in the Bloch-Nordsieck Model