Entropy Production and Particle Yields in Heavy Ion Collisions at LHC

Béla Lukács

MTA KFKI RMKI, Budapest, Hungary

ZIMANYI-SCHOOL11, Budapest, 28/11/2010

B. Lukács, RMKI, Hungary

ECM [GeV]	$\mathrm{S/N}$
17.3	51.4
19.4	52.2
130	57.5
200	58.6
7000	66.1
14000	67.8

TABLE I: Entropy densities at various energies of center of mass.

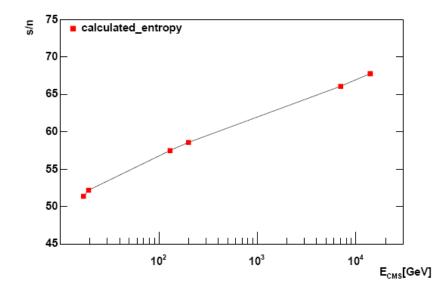


FIG. 1: Calculated specific entropies at different center of mass energies.

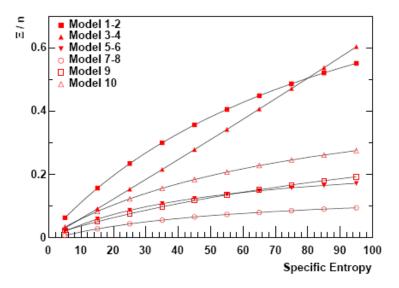


FIG. 2: Ξ/n ratios of model predictions above S/N=5.

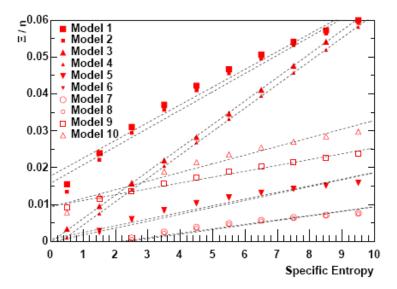


FIG. 3: Ξ/n ratios of model predictions between S/N=0 and 10.

Model	158 GeV fix	200 GeV fix	$130~{ m GeV}$	$200 {\rm GeV}$
1 & 2	0.394	0.759	0.012	0.0503
3 & 4	1.326	2.819	0.009	0.0306
5 & 6	0.120	0.141	0.005	0.0330
7&8	0.165	0.283	0.005	0.0308
9	0.020	0.028	0.072	0.0950
10	0.084	0.176	0.054	0.1288

TABLE II: The average predictive errors of the individual models.

Particle	Model 100	Model 110	Model Hadr.	110 with Max.	Mass (Mev)
symbolic	(5)	(7)	M.(9)	Frag. (11)	
Ν	538.57	484.23	392.96	596.51	939
\overline{N}	338.57	312.70	158.93	379.23	939
Υ	627.82	731.65	267.67	677.65	1174
\overline{Y}	428,02	497.19	118.35	478.38	1174
Ξ	81.64	39.76	61.49	27.76	1318
Ξ	66.30	32.10	33.41	23.13	1318
Ω	20.48	1.04	8.32	0.35	1672
$\overline{\Omega}$	20.48	1.04	5.74	0.35	1672
π	3876.58	3805.52	1835.55	4235.64	138
К	1325.09	1431.71	996.78	1313.60	496
\overline{K}	1094.60	1181.93	785.35	1105.16	496
η	168.44	129.90	370.84	89.22	549

TABLE III: The quantities of Point 4 at 14 TeV. Y stands for (Λ, Σ) . The bold column is our favoured prediction

	Conservation	Model 5	Model 7	Model 9	Model 11
Total ptcl N^o	-	8586.59	8648.77	5035.39	8926.98
Strangeness	0.00	0.83	0.00	1.79	0.09
Baryon N^o	414.00	415.14	413.65	414.01	421.18

TABLE IV: Conservation checks

Model	$E_{tot}/414~{ m GeV}$	$M_{tot}/414~{ m GeV}$	$E_{transf}/414~{ m GeV}$
5	7000	10.10	14.14
7	7000	10.10	14.18
9	7000	5.94	7.93
11	7000	10.08	14.32

TABLE V: Conversion of kinetic energy into anything.

Particle	Model 100	Model 110	Model Hadr.	110 with Max.	Model 110
symbolic	(5)	(7)	M.(9)	Fragm. (11)	S/N=75
р	269.28	242.12	196.48	298.26	269.30
\overline{p}	169.28	156.35	79.46	189.62	175.42
n	269.28	242.12	196.48	298.26	256.30
\overline{n}	169.28	156.35	79.46	189.62	175.42
Σ^+	104.64	121.94	44.61	112.94	133.52
$\overline{\Sigma^+}$	71.34	82.86	19.74	79.73	92.91
Σ^0	0	0	0	0	0
$\overline{\Sigma^0}$	0	0	0	0	0
Σ^{-}	104.64	121.94	44.61	112.94	133.52
$\overline{\Sigma^{-}}$	71.34	82.86	19.74	79.73	92.91
Λ	418.55	488.43	173.45	451.77	534.10
$\overline{\Lambda}$	185.35	331.46	78.90	318.92	371.64
Ξ^0	40.82	19.88	30.74	13.88	22.05
$\overline{\Xi^0}$	33.15	16.05	16.70	11.56	17.97

TABLE VI: The predicted hadronic observables in a central Pb + Pb collision at 14 TeV/nucleon CM energy.

Ξ	40.82	19.88	30.74	13.88	22.05
<u> </u>	33.15	16.05	16.70	11.56	17.97
Ω^{-}	20.48	1.04	8.32	0.35	1.17
$\overline{\Omega^{-}}$	20.48	1.04	5.74	0.35	1.17
π^+	1017.99	989.05	566.43	1084.78	1095.28
π^0	0	0	0	0	0
π^{-}	1017.99	989.05	566.43	1084.78	1095.28
K^{-}	662.54	715.86	498.39	656.80	789.77
K^+	547.30	590.96	392.68	552.58	659.76
K_L^0	604.92	653.41	445.53	604.69	724.77
K_S^0	604.92	653.41	445.53	604.69	724.77
η	0	0	0	0	0

TABLE VI: The predicted hadronic observables in a central Pb+Pb collision at 14 TeV/nucleon CM energy.

	1987	5	7	9	11	7+
Note	$14.5 {\rm GeV} {\rm fix}$		Favourite	Hadronic	Enh. fragm.	S/N=75
K^+/π^+	0.24	0.538	0.598	0.693	0.509	0.602
K^-/π^-	≈ 0	0.651	0.724	0.880	0.605	0.721

TABLE VII: K/π ratios.

Energy/nucl.	Ratios	Experiment	Reference	Value
158 GeV SPS	Ξ^0/Λ	WA97	[26]	0.14 ± 0.02
	$\overline{\Xi^0}/\overline{\Lambda}$	WA97	[26]	0.26 ± 0.05
	Ω/Ξ^0	WA97	[26]	0.19 ± 0.04
	$\overline{\Omega}/\overline{\Xi^0}$	WA97	[26]	0.30 ± 0.09
	$\overline{\Lambda}/\Lambda$	WA97, NA49	[26]	0.145 ± 0.024
	<u>=</u> /=-	WA97	[26]	0.27 ± 0.05
	$\overline{\Omega}/\Omega$	WA97	[26]	0.42 ± 0.12
	$(\Xi^- + \overline{\Xi^-})/(\Lambda + \overline{\Lambda})$	NA49	[26]	0.13 ± 0.03
	$\overline{\Lambda}/\overline{p}$	NA49	[34]	1.05 ± 0.16
	K^{-}/K^{+}	NA49	[27]	0.59 ± 0.05
200 GeV SPS	$\overline{\Lambda}/\overline{p}$	NA35	[25]	0.80 ± 0.25
	Ξ^-/Λ	WA85	[15]	0.19 ± 0.01
	$\overline{\Xi^-}/\overline{\Lambda}$	WA85	[15],[25]	0.21 ± 0.02
	$(\Omega+\overline{\Omega})/(\Xi^-+\overline{\Xi^-})$	NA35	[25]	0.80 ± 0.4
	$\overline{\Lambda}/\Lambda$	NA35	[32]	0.18 ± 0.06

TABLE VIII: Particle ratios from different reactions of collision energy. \sim

130 GeV RHIC	\overline{p}/p	STAR	[27], [28]	0.64 ± 0.05
	$\overline{\Omega}/\Omega$	STAR	[29]	1.00 ± 0.2
	$\overline{\Lambda}/\Lambda$	STAR	[27], [28]	0.77 ± 0.05
	<u>=</u> /=	STAR	[27], [28]	0.81 ± 0.05
	π^{-}/π^{+}	PHOBOS	[28]	0.95 ± 0.06
	K^{-}/K^{+}	STAR	[28]	0.90 ± 0.05
200 GeV RHIC	\overline{p}/p	PHOBOS, PHENIX	[29], [30]	0.84 ± 0.04
		STAR, BRAHMS		
	K^{-}/K^{+}	PHOBOS, PHENIX	[29], [30]	0.98 ± 0.04
		BRAHMS		
	π^{-}/π^{+}	PHOBOS	[30]	1.02 ± 0.02
	K^-/π^-	STAR, BRAHMS	[29]	0.15 ± 0.02
	\overline{p}/π^{-}	BRAHMS	[29]	0.08 ± 0.01

TABLE VIII: Particle ratios from different reactions of collision energy. $^{\rm 21}$