

Jan Figiel for the ALICE collaboration

The Henryk Niewodniczański Institute of Nuclear Physics, Cracow

Topology of central diffraction:

- "intact" final protons (or diss.?)
- two rapidity gaps
- hadronic state X in centre

If Double Pomeron Exch. (**DPE**)

X is scalar or tensor:

(This figure is from ISR times...)

Possible exchanges:

Pomeron (C=+1), QCD: 2 gluons,

Odderon (C=-1), QCD: 3 gluons

Photon y (C=-1),

р	200	
2	IΡ	
		S,T
р	ΙΡ	$f_0(980), f_2(1270), \chi_c$
р		
Ode	deron	
		V
р	IP I	ρ , J/ψ

Туре	Meson	I ^G	J^{PC}
S	$f_0/\sigma(600), f_0(980), \chi_c$	0+	0++
PS	π^{o} , η_{c}	1-/0+	0-+
V	ρ°, J/ψ	1+/0-	1
Т	f ₂ (1270)	0+	2**

Central diffraction in ALICE?

Protons "intact" or dissociate into low mass state...

- Detector optimised for heavy-ion studies not diffraction...
- +++ excellent detection and identification of charged particles in the "centre"
 - ++ good coverage of broader rapidity range
 - → rapidity gaps
- ++ one should try!

Particle detection

TPC and SPD:

 $-0.9 < \eta < 0.9$

V0, FMD, SPD:

$$-3.7 < \eta < -0.9$$
, (C)

$$0.9 < \eta < 5.1$$
, (A)

⇒ Double gap:

No activity for $|\eta| > 0.9$

Charged particles: $-3.7 < \eta < 5.1$ (~9 units of rapidity!)

LHC2010: pp@7TeV, Trigger "minimum bias (MB)" (SPD, V0A, V0C)

Primary vertex and exactly 2 **TPC+ITS** tracks:

32.3 M events,

Gap A: no activity $0.9 < \eta < 5.1$ (V0A, FMD, SPD),

Gap C: no activity $-3.7 < \eta < -0.9$ (V0C, FMD, SPD)

Two rapidity gaps (gap A and gap C):

0.15 M events

Particle identification

ALI-PERF-4849

Good charged pion/kaon discrimination:

TPC - momenta < 600 MeV/c, TOF - momenta < 1.5 GeV/c

Two rap. gaps, 2 tracks in **TPC**, ($|\eta| < 0.9$) identified as pions in **TPC** or **TOF**:

Comparison: "no gap" — "double gap", **unlike** signs

- No gap: K_{s}^{0} , $\rho^{0}(770)$
- Double gap: $f_0(980)$, $f_2(1270)$

"Double gap" → Double Pomeron Exchange!

"Double gap": 4 pions

Is this $\rho(1700)$, (STAR 2010, AuAu \rightarrow Au $2\pi^+2\pi^-$ Au) or some exotic state?

Outlook

- Central, exclusive diffraction in pp collisions is observed in ALICE
- Signals of $f_0(980)$ and $f_2(1270)$ are qualitatively compatible with DPE
- A lot of work needed for quantitative results
- Chance for Odderon...?
- Ultra-peripheral Pb-Pb collisions studied as well...

Back-up slides

Axial Field Spectrometer (AFS: R807):

For xF > 0.95 (both p) OR for Δy > 3 (both gaps) M(X) <~ 3 GeV/c2

If Double Pomeron Exchange →

X – scalar or tensor quantum numbers:

AFS@ISR:

Fig. 3. Invariant mass distributions for the central π^+ π^- , $2\pi^+$ $2\pi^-$, and $3\pi^+$ $3\pi^-$ systems from reactions (1-3) respectively (in µb per 100 MeV bin). This figure, and all subsequent figures, show data which have been acceptance corrected

[→] this is Double Pomeron Exchange!

Exclusive Dimuon Production

• Observation of exclusive χ_c PRL 102 242001 (2009)

Exclusive dimuon production

p +
$$\overline{p} \rightarrow p + \mu^{+}\mu^{-} + \overline{p}$$

3 GeV/c² < M _{$\mu\mu$} < 4 GeV/c²

Trigger:

muon + track + forward rapidity gaps in BSCs

2 oppositely charged muon tracks with $p_T > 1.4$ GeV/c, $|\eta| < 0.6$ $\epsilon_{\rm excl}$ ~0.093 => L=1.48 fb⁻¹ but L_{eff} ~140pb⁻¹

September 5-9, 2011

Christina Mesropian, Summer School Heidelberg

Exclusive J/ψ and ψ(2s)

J/ψ production

243 ±21 events

 $d\sigma/dy|_{y=0} = 3.92 \pm 0.62 \text{ nb}$

Theoretical Predictions

- 2.8 nb [Szczureko7,],
- 2.7 nb [Klein&Nystrando4],
- 3.0 nb [Conclaves&Machadoo5], and
- 3.4 nb [Motkya&Watto8].

$\Psi(2s)$ production

34±7 events

$$|d\sigma/dy|_{y=0} = 0.54 \pm 0.15 \text{ nb}$$

 $R = \psi(2s)/J/\psi = 0.14 \pm 0.05$

In agreement with HERA: $R = 0.166 \pm 0.012$ in a similar kinematic region

Exclusive $\chi_c \rightarrow J/\psi (\rightarrow \mu^+ \mu^-) + \gamma$

Allowing EM towers (E_T>8oMeV) large increase in the J/ψ peak minor change in the ψ(2s) peak

1

Evidence for

$$\chi_c \rightarrow J/\psi + \gamma$$
 production

 $d\sigma/dy|_{y=0} = 75 \pm 14 \text{ nb},$ compatible with theoretical predictions 160 nb (Yuan 01) 90 nb (KMR01)

September 5-9, 2011

Christina Mesropian, Summer School Heidelberg

Odderon in central diffraction at **LHC**

Bzdak, Motyka, Szymanowski, Cudell (2007):

pp → pp J/Ψ	do/dyl _{y=0}
ΙΡ - γ	15 (2.4 – 27) nb
IP- Odderon	0.9 (0.3 - 4) nb

Odderon exchange \rightarrow bigger J/ Ψ p_{τ}...

