Jets in noisy environments

Grégory Soyez IPhT, CEA Saclay

In collaboration with Gavin Salam and Matteo Cacciari

Krakow — November 28-30 2011

- Introduction: background effects on jets
- Jet reconstruction methods: how to subtract the background?
 - Jet-area based subtraction: our proposed method
 - Performance tests: how well do we do?
- A case study in HI:

dijet asymmetry, what room for quenching?

Introduction

The challenge

Best illustrated with an example (dijet, $p_t > 100 GeV$)

From "clean" pp...

...to busy AA

- p_t shift (net contamination)
- resolution degradation (fluctuations in and across events)

The challenge

Best illustrated with an example (dijet, $p_t > 100 GeV$)

From "clean" *pp*...

...to busy AA

And it can get worse!!!

Effects

Background added to the jet: (inside an event!)

$$p_{t,\text{jet}}^{\text{hard}} \rightarrow p_{t,\text{jet}} = p_{t,\text{jet}}^{\text{hard}} + \rho A_{\text{jet}} \pm \sigma \sqrt{A_{\text{jet}}}$$

- $A \equiv \text{jet area (for each jet)}$
- $\rho \equiv$ background density (for each event)
- $\sigma \equiv$ background fluctuations (for each event)

Effects

Background added to the jet: (inside an event!)

$$p_{t,\text{jet}}^{\text{hard}} \rightarrow p_{t,\text{jet}} = p_{t,\text{jet}}^{\text{hard}} + \rho A_{\text{jet}} \pm \sigma \sqrt{A_{\text{jet}}}$$

 Back-reaction: No background

With background

Effects

Background added to the jet: (inside an event!)

$$p_{t,\text{jet}}^{\text{hard}} \rightarrow p_{t,\text{jet}} = p_{t,\text{jet}}^{\text{hard}} + \rho A_{\text{jet}} \pm \sigma \sqrt{A_{\text{jet}}}$$

 Back-reaction: No background
 With background

This talk: "subtracting ρ , discussing the effects of σ "

Typical numbers

Default: anti- k_t jets R = 0.4, 0 - 10% centrality

Estimates	LHC, PU	RHIC, AA	LHC, AA
ρ	15 GeV	90 GeV	200 GeV
$\sigma_{ ho}{}^{(1)}$	4 GeV	15 GeV	40 GeV
σ	5 GeV	8 GeV	20 GeV (2)
$A_{\rm jet}$	0.5	0.5	0.5
$\delta p_{t, { m jet}}$	7.5 GeV	50 GeV	100 GeV
$\sigma_{ m jet}$	3.5 GeV	7 GeV	16 GeV (2)

Notes:

- 1. $\sigma_{\rho} \equiv$ fluctuations of ρ across different events. Importance of a event-by-event subtraction
- 2. to be discussed later on!

Background subtraction

Jet-area-based subtraction

$$p_{t,\text{jet}}^{(\text{sub})} = p_{t,\text{jet}} - \rho_{\text{bkg}}A_{\text{jet}}$$

Jet area A_{jet} : per jet Bkg density ρ_{bkg} : (typically) per event

Jet-area-based subtraction

$$p_{t,\text{jet}}^{(\text{sub})} = p_{t,\text{jet}} - \rho_{\text{bkg}}A_{\text{jet}}$$

jet area: throw ghosts particles (area quanta) in the event

- defined to mimic the reaction to the background
- implemented in FastJet
- analytic handle

Jet-area-based subtraction

$$p_{t,\text{jet}}^{(\text{sub})} = p_{t,\text{jet}} - \rho_{\text{bkg}}A_{\text{jet}}$$

- jet area: throw ghosts particles (area quanta) in the event
- ${}_{m{\rho}}$ $\rho_{
 m bkg}$, the background p_t density per unit area
 - Cluster with k_t of C/A with "radius" R_{ρ}
 - Estimate $ho_{\rm bkg}$ using

$$\rho_{\rm bkg} = \underset{j \in jets}{\text{median}} \left\{ \frac{p_{t,j}}{A_j} \right\}$$

Background fluctuations: (inside an event!)

$$p_{t,\text{jet}} = p_{t,\text{jet}}^{\text{hard}} + \rho_{\text{bkg}}A_{\text{jet}} \pm \sigma_{\text{bkg}}\sqrt{A_{\text{jet}}}$$

<u>Hint</u>: *e.g.* using filtering (beyond this talk)

Back-reaction:

anti- $k_t \approx$ circlular jets (rigidity!) \Rightarrow no back-reaction

Subtraction uncertainties (2/2)

3 Background non-uniform (*e.g.* rap dependence)

local range ${\cal R}$

$$\rho(j) = \underset{j' \in \mathcal{R}(|)}{\operatorname{median}} \left\{ \frac{p_{t,j'}}{A_{j'}} \right\}$$

$$\overbrace{j \in \mathcal{R}(|)}^{\text{Global}} \stackrel{2\pi}{}_{0}$$

$$\overbrace{j \in \mathcal{R}(|)}^{2\pi} \stackrel{0}{}_{0}$$

$$\overbrace{y_{\mathrm{max}}}^{2\pi} \stackrel{y_{\mathrm{max}}}{}_{0}$$

$$\overbrace{y_{\mathrm{max}} - \Delta y_{\mathrm{jet}} + \Delta}^{2\pi}$$

rapidity rescaling

$$\rho(j) = f(y_j) \operatorname{median}_{\operatorname{all} j'} \left\{ \frac{p_{t,j'}}{A_{j'} f(y_{j'})} \right\}$$

Subtraction performances

Hard (Pythia) event

p_, [GeV] p [GeV] hard jets full jets 140 140-120-120-100-100-80-80-60 60 **40** 40 20-20 0 φ -3 0 У у

... embedded in background

• Get the jets and apply subtraction in both cases (R = 0.4)

test different methods for ρ estimation

p [GeV] hard jets full jets 140-120 100-80 60 40 20 φ 2 -2 -3 -2 -3

... embedded in background

- Get the jets and apply subtraction in both cases (R = 0.4)
- Match the 2 hardest jets

Hard (Pythia) event

p [GeV]

140

120-

100-

80

60·

40

20

0

at least 50% of the hard contents recovered after embedding Efficiencies \geq 95%

... embedded in background

-2

-3

- Get the jets and apply subtraction in both cases (R = 0.4)
- Match the 2 hardest jets

-3

-2

Hard (Pythia) event

p [GeV]

140

120-

100-

80-

60·

40

20-

0

- Subtraction quality: $\Delta p_t = p_t^{\mathrm{hard} + \mathrm{bkg, sub}} p_t^{\mathrm{hard, sub}}$
- ${}_{ullet}$ Study $\langle \Delta p_t
 angle$ and $\sigma_{\Delta p_t}$

2

Hard (Pythia) event

... embedded in background

- Get the jets and apply subtraction in both cases (R = 0.4)
- Match the 2 hardest jets
- Subtraction quality: $\Delta p_t = p_t^{\rm hard+bkg, sub} p_t^{\rm hard, sub}$
- ${}_{ullet}$ Study $\langle \Delta p_t
 angle$ and $\sigma_{\Delta p_t}$
- Flexible: vary jet definition, subtraction range, Monte-Carlo, ...
 Can even use real minbias data for the background

Many possible plots:

- as a function of y, $p_{t,jet}$, n_{PU}
- LHC pp + PU, RHIC AuAu, LHC PbPb
- Monte-Carlo variations
- HI: quenching, centrality
- Details of the subtraction (jet def, range, ...)

Only a minimalistic (hopefully representative) shown!

Δp_t distributions

Direct measurement of the residual subtraction error for each individual jet:

Example for *PbPb* collisions at LHC(5.5 TeV)

From now on, focus on $\langle \Delta p_t \rangle$ and $\sigma_{\Delta p_t}$

Subtraction benchmarks: rapidity dependence

Average shift vs. rapidity: LHC, anti- $k_t(R = 0.5)$ jets + $\langle 20 \rangle$ PU events

- local range & y-rescaling help
- typical 100-200 MeV average precision for PU
- HI: a few 100 MeV, no bias due to quenching or non-central

Subtraction benchmarks: dispersion

Residual resolution effect:

- improvement compared to "no subtraction": no sensitivity to σ_{ρ}
- improvement compared to "naive subtraction": no sensitivity to σ_{ρ} $p_{t,sub} = p_t - n_{PU}$.(constant ρ) A_{jet}
- Can reach large resolution effects from intra-event flucts. in HI
- (effect $\propto \sqrt{p_t}$ from back-reaction)

Application: *pp* **Dijet resonnance** *reconstruction*

Massive resonance $Z' \rightarrow qq$

Z' in the dijet mass spectrum (here $M_{Z'} = 300 \text{ GeV}$)

Unsubtracted

Subtracted

- Peak position corrected ($\langle \Delta p_t \rangle \approx 0$)
- Less smearing effects (no effect from σ_{ρ})

Application: HI Dijet Asymmetry

As observed by ATLAS

[ATLAS, QM2011]

 $A_J = \frac{E_{T,1} - E_{T,2}}{E_{T,1} + E_{T,2}}$

Interpretation: A_J increasing from pp to AA as a consequence Of quenching

As observed by CMS

How is this measurement influenced by the fluctuations of the HI background?

- Example: take a "typical" pp asymmetry: $p_{t,1} = 100 \text{ GeV}, p_{t,2} = 67 \text{ GeV} \Rightarrow A_J = 0.2,$ Flucts: $p_{t,1} + 16 \text{ GeV}, p_{t,2} - 16 \text{ GeV} \Rightarrow A_J \sim 0.4$ Fluctuations can mimic quenching
- Potential worry: Neglecting the fluctuations could lead to over-estimating the quenching (or misunderstanding its mechanisms)!

Setup

Try to stay close to the ATLAS setup:

- Pythia dijets with basic cuts
 - $p_{t,1} > 100 \text{ GeV}, p_{t,2} > 25 \text{ GeV}$
 - $|\delta \phi| > \pi/2$, |y| < 2.8
- Option 1: naive Gaussian smearing of each jet with a Gaussian of avg 0 and stddev $\sigma_{jet} \equiv \sigma_{\Delta p_t}$
- Option 2: Monte-Carlo background
 - embedded in (unquenched) Hydjet
 - calorimeter simulation
 - subtraction using a jet-area-based method
- Side question: Pythia dijets generated above a $p_{t,\min}$ threshold. How small does this have to be?

Results — Gaussian smearing

- fluctuation effects increase the dijet asymmetry
- depends on $\sigma_{\rm jet} \Rightarrow$ important to constrain $\sigma_{\rm jet}$
- too low $p_{t,\min}$ may miss the effect in the MC

Results — Hydjet

Same concl.: fluctuations may matter quantitatively

• Most central, $\sigma_{jet} \approx 17 \text{ GeV}$ similar to Gaussian with $\sigma_{jet} = 20 \text{ GeV}$ \Rightarrow non-Gaussianities play a role too. Frequent "complaint" that σ_{jet} of 20 GeV is way too large and HYDJET has too much fluctuations!

That is not what ALICE sees:

track \rightarrow jet, charged \rightarrow all, calorimeter $\rightarrow \sigma_{jet} \sim 17 \text{ GeV}$

Conclusions

- Jet-area-based background subtraction:
 - removes average and event-to-event flucts.
 - corrections for rapidity/positional dependence
 - $\scriptstyle \bullet \,$ subtraction performance $\sim 100 \ \rm MeV$
 - independent of calo
 - Ieft with intra-event fluctuations
- Applications:
 - $\hfill \hfill \hfill$
 - Heavy-ion underlying-event subtraction (watch out for the flucts.)

FastJet 3.0.1 just released together with the manual [arXiv:1111.6097]

Interface: a jet knows about its structure, e.g. clust_seq.constituents(jet); → jet.constituents();

- Generic additional info in PseudoJet: jet.extra_info()
- Improved bkgd subtraction: (e.g. local ranges, rescaling, ...)
 - JetMedianBackgroundEstimator
 - GridMedianBackgroundEstimator
 - Subtractor
- FastJet substructure tools e.g. Filter + taggers

Check out http://www.fastjet.fr (feedback welcome)

Backup slides

Alternative subtraction schemes

ATLAS

- cluster the jets
- in each calo rapidity strip compute average cell E_t
- exclude jets with $E^{\max}/(E) > D$

 $E_T^{\max}/\langle E_T \rangle > D_{\text{cut}}(=5)$

- \bullet recompute average cell E_t
- iterate cut
- subtract that average from the jets

CMS

- in each calo rapidity strip compute $\langle E_t \rangle$ and σ_{E_T}
- subtract $\langle E_t \rangle + \sigma_{E_T}$
- from each cell
- cluster the jets
- exclude jets with $E_T > 10 \text{ GeV}$

iterate

Noise removal

Alternative subtraction schemes

ATLAS

- cluster the jets
- in each calo rapidity strip compute average cell E_t
- exclude jets with $E_T^{\max}/\langle E_T \rangle > D_{\text{cut}}(=5)$
- recompute average cell E_t
- iterate cut
- subtract that average from the jets

CMS

- in each calo rapidity strip compute $\langle E_t \rangle$ and σ_{E_T}
- subtract $\langle E_t \rangle + \sigma_{E_T}$
- from each cell
- cluster the jets
- exclude jets with $E_T > 10 \text{ GeV}$

iterate

Noise removal

Similar to jet-area-based less flucts. but potential bias requires a calorimeter/grid input

Noise removal from CMS subtraction

Subtracting $\langle E_T^{\text{tower}} \rangle + \sigma_{\text{tower}}$ implies (roughly):

Keeping "background cells" above the threshold

 $\langle \delta p_{t,\text{jet}}^{\text{noise}} \rangle \simeq 0.0833 \, \sigma_{\text{tower}} \, N_{\text{tower}} \simeq 8 - 16 \, \text{GeV}$

• Throwing away part of the jet ($f \equiv$ occupancy)

$$\langle \delta p_{t,\text{jet}}^{\text{hard}} \rangle \simeq -f \,\sigma_{\text{tower}} \, N_{\text{tower}}$$

Vacuum QCD: $f \simeq 0.1$ *i.e.* cancels the one above Consequences:

- Noise reduction: $\sigma_{\rm jet}^{\rm noise-suppr.} \simeq 0.26 \sigma_{\rm tower} \sqrt{N_{\rm tower}}$ VS. $\sigma_{\rm jet} \simeq \sigma_{\rm tower} \sqrt{N_{\rm tower}}$
- potential bias, especially, f for quenched jets?

Q: Not all jets should be smeared!

A: Yes, they should! Smearing should be proportional to $\sqrt{A_{\rm jet}}$ but we checked it has no influence

Q: Not all jets should be smeared!

- A: Yes, they should! Smearing should be proportional to $\sqrt{A_{jet}}$ but we checked it has no influence
- Q: Your toy calorimeter is too noisy and unlike ours!

A: Is it?

Note: extrapolation of tower fluctuations measured by AT-LAS gives $\sigma_{\rm jet} \simeq 8.5$ GeV. However, this, and the *PbPb* jet resolution, are quoted at EM scale *i.e.* not easily extrapolated to the full answer

Q: Not all jets should be smeared!

- A: Yes, they should! Smearing should be proportional to $\sqrt{A_{\rm jet}}$ but we checked it has no influence
- Q: Your toy calorimeter is too noisy and unlike ours!A: Is it?
- Q: Other measurements like the jet core fraction and the R dependence of A_J go in the opposite direction as expected from fluctuations!
- A: Sure. These likely indicate some genuine quenching effects. But <u>quantitative</u> understanding would benefit from characterising the fluctuations.

Last but not least

- Q: σ_{jet} of 20 GeV is way too large and HYDJET has too much fluctuations!
- A: That is not what ALICE sees:
 - ALICE: single track embedded in 0-10% LHC
 - MC: single track embedded in 0-10% HYDJET
 - reconstruct and subtract (jet-area based)
 - look at $\Delta p_t = p_{t, \text{rec}} p_{t, \text{track}}$
 - same cuts and subtraction details

Last but not least

- Q: σ_{jet} of 20 GeV is way too large and HYDJET has too much fluctuations!
- A: That is not what ALICE sees:

Nearly-perfect agreement!

Last but not least

- Q: σ_{jet} of 20 GeV is way too large and HYDJET has too much fluctuations!
- A: That is not what ALICE sees:

track \rightarrow jet, charged \rightarrow all, calorimeter $\rightarrow \sigma_{jet} \sim 17 \text{ GeV}$

• Fluctuations can significantly affect the measured $A_J \Rightarrow$ quantify fluctuations important to quantify quenching

ALICE produced the first measurement of flucts

- agrees with flucts having significant impact
- first step towards understanding flucts
- Could a calorimetry upgrade help?