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Plan

Introduction: background effects on jets

Jet reconstruction methods: how to subtract the background?

Jet-area based subtraction: our proposed method

Performance tests: how well do we do?

A case study in HI:
dijet asymmetry, what room for quenching?
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Introduction
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The challenge

Best illustrated with an example (dijet, pt > 100GeV )

From “clean” pp... ...to busy AA
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resolution degradation (fluctuations in and across events)
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The challenge

Best illustrated with an example (dijet, pt > 100GeV )

From “clean” pp... ...to busy AA
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And it can get worse!!!
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Effects

Background added to the jet: (inside an event!)

phardt,jet → pt,jet = phardt,jet + ρAjet ± σ
√

Ajet

A ≡ jet area (for each jet)

ρ ≡ background density (for each event)
σ ≡ background fluctuations (for each event)
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Effects

Background added to the jet: (inside an event!)

phardt,jet → pt,jet = phardt,jet + ρAjet ± σ
√

Ajet

Back-reaction:
No background With background

gainloss

– p. 5



Effects

Background added to the jet: (inside an event!)

phardt,jet → pt,jet = phardt,jet + ρAjet ± σ
√

Ajet

Back-reaction:
No background With background

gainloss

This talk: “subtracting ρ, discussing the effects of σ”
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Typical numbers

Default: anti-kt jets R = 0.4, 0− 10% centrality

Estimates LHC, PU RHIC, AA LHC, AA
ρ 15 GeV 90 GeV 200 GeV
σρ

(1) 4 GeV 15 GeV 40 GeV
σ 5 GeV 8 GeV 20 GeV (2)

Ajet 0.5 0.5 0.5
δpt,jet 7.5 GeV 50 GeV 100 GeV
σjet 3.5 GeV 7 GeV 16 GeV (2)

Notes:

1. σρ ≡ fluctuations of ρ across different events.
Importance of a event-by-event subtraction

2. to be discussed later on!
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Background subtraction
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Jet-area-based subtraction

p
(sub)
t,jet = pt,jet − ρbkgAjet

Jet area Ajet: per jet
Bkg density ρbkg: (typically) per event
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Jet-area-based subtraction

p
(sub)
t,jet = pt,jet − ρbkgAjet

jet area: throw ghosts particles (area quanta) in the event

defined to mimic the reaction to the background

implemented in FastJet

analytic handle
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Jet-area-based subtraction

p
(sub)
t,jet = pt,jet − ρbkgAjet

jet area: throw ghosts particles (area quanta) in the event

ρbkg, the background pt density per unit area

Cluster with kt of C/A with “radius” Rρ

Estimate ρbkg using

ρbkg = median
j∈jets

{

pt,j
Aj

}

.

 0

 5

 10

 15

 20

 25

 30

 35

-4 -2  0  2  4

P
t,j

et
 / 

A
re

a j
et

η

median

– p. 8



Subtraction uncertainties (1/2)

Background fluctuations: (inside an event!)

pt,jet = phardt,jet + ρbkgAjet ± σbkg
√

Ajet

Hint: e.g. using filtering (beyond this talk)

Back-reaction:

anti-kt ≈ circlular jets (rigidity!)
anti-kt ⇒ no back-reaction
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Subtraction uncertainties (2/2)

Background non-uniform (e.g. rap dependence)

local range R rapidity rescaling

ρ(j) = median
j′∈R(|)

{

pt,j′

Aj′

}

ρ(j) = f(yj)median
allj′

{

pt,j′

Aj′ f(yj′)

}

Global
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"Seen": ≥2 charged tracks, pt>100 Mev, |y|<2.5

ρ(y)=(1.051141-0.023608y2+0.000022y4) fseen GeV

Fraction of seen events: fseen=0.697114

√s=7 TeV, Pythia 8150, tune 4C minbias
fit

f from minbias
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Subtraction performances
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Framework for study: embedding
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Hard (Pythia) event ... embedded in background

Get the jets and apply subtraction in both cases (R = 0.4)

test different methods for ρ estimation
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Framework for study: embedding
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Hard (Pythia) event ... embedded in background

Get the jets and apply subtraction in both cases (R = 0.4)

Match the 2 hardest jets

at least 50% of the hard contents recovered after embedding

Efficiencies ≥ 95%
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Framework for study: embedding
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Hard (Pythia) event ... embedded in background

Get the jets and apply subtraction in both cases (R = 0.4)

Match the 2 hardest jets

Subtraction quality: ∆pt = p
hard+bkg,sub
t − p

hard,sub
t

Study 〈∆pt〉 and σ∆pt

– p. 12



Framework for study: embedding
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Hard (Pythia) event ... embedded in background

Get the jets and apply subtraction in both cases (R = 0.4)

Match the 2 hardest jets

Subtraction quality: ∆pt = p
hard+bkg,sub
t − p

hard,sub
t

Study 〈∆pt〉 and σ∆pt

Flexible: vary jet definition, subtraction range, Monte-Carlo, ...

Can even use real minbias data for the background
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Disclaimer

Many possible plots:

as a function of y, pt,jet, nPU

LHC pp+ PU , RHIC AuAu, LHC PbPb

Monte-Carlo variations

HI: quenching, centrality

Details of the subtraction (jet def, range, ...)

Only a minimalistic (hopefully representative) shown!
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∆pt distributions

Direct measurement of the residual subtraction error for each
individual jet:

Example for PbPb collisions at LHC(5.5 TeV)
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From now on, focus on 〈∆pt〉 and σ∆pt
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Subtraction benchmarks: rapidity dependence

Average shift vs. rapidity: LHC, anti-kt(R = 0.5) jets + 〈20〉 PU events
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√s=7 TeV, Pythia8(4C), 〈20〉 PU
anti-kt R=0.5, dijets pt>100 GeV
bkgd: kt R=0.4

unsubtr
global R

strip R
y-resc.

local range & y-rescaling help

typical 100-200 MeV average precision for PU

HI: a few 100 MeV, no bias due to quenching or non-central
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Subtraction benchmarks: dispersion

Residual resolution effect:

pp+〈20〉 PU, anti-kt(R = 0.5) jets PbPb, anti-kt(R = 0.4) jets
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Can reach large resolution effects from intra-event flucts. in HI

(effect ∝
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Application: pp Dijet resonnance
reconstruction
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Massive resonnance Z ′ → qq

Z ′ in the dijet mass spectrum (here MZ′ = 300 GeV)

Unsubtracted Subtracted

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 260  280  300  320  340

1/
N

 d
N

/d
m

 (
G

eV
-1

)

reconstructed Z’ mass (GeV)

MZ’=300 GeV
kt (R=0.6)

SISCone (R=0.6)
no pileup

with pileup

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 260  280  300  320  340
1/

N
 d

N
/d

m
 (

G
eV

-1
)

reconstructed Z’ mass (GeV)

MZ’=300 GeV
kt (R=0.6)

SISCone (R=0.6)
no pileup

with pileup

Peak position corrected (〈∆pt〉 ≈ 0)

Less smearing effects (no effect from σρ)

– p. 18



Application: HI Dijet Asymmetry
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As observed by ATLAS

[ATLAS, QM2011]

AJ =
ET,1 − ET,2

ET,1 + ET,2

Interpretation:
AJ increasing
from pp to AA as
a consequence
of quenching
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As observed by CMS

Same kind of story for CMS... [CMS, QM2011]
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Main question

How is this measurement influenced by
the fluctuations of the HI background?

Example: take a “typical” pp asymmetry:
pt,1 = 100 GeV, pt,2 = 67 GeV ⇒ AJ = 0.2,

Flucts: pt,1 + 16 GeV, pt,2 − 16 GeV ⇒ AJ ∼ 0.4

Fluctuations can mimic quenching

Potential worry: Neglecting the fluctuations could
lead to over-estimating the quenching
(or misunderstanding its mechanisms)!
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Setup

Try to stay close to the ATLAS setup:

Pythia dijets with basic cuts
pt,1 > 100 GeV, pt,2 > 25 GeV
|δφ| > π/2, |y| < 2.8

Option 1: naive Gaussian smearing of each jet
with a Gaussian of avg 0 and stddev σjet ≡ σ∆pt

Option 2: Monte-Carlo background
embedded in (unquenched) Hydjet
calorimeter simulation
subtraction using a jet-area-based method

Side question: Pythia dijets generated above a
pt,min threshold. How small does this have to be?
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Results — Gaussian smearing
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fluctuation effects increase the dijet asymmetry

depends on σjet ⇒ important to constrain σjet

too low pt,min may miss the effect in the MC
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Results — Hydjet
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Same concl.: fluctuations may matter quantitatively

Most central, σjet ≈ 17 GeV
similar to Gaussian with σjet = 20 GeV
⇒ non-Gaussianities play a role too.
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ALICE flucts. measurement

Frequent “complaint” that σjet of 20 GeV is way too
large and HYDJET has too much fluctuations!

That is not what ALICE sees:
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Conclusions

Jet-area-based background subtraction:
removes average and event-to-event flucts.
corrections for rapidity/positional dependence
subtraction performance ∼ 100 MeV
independent of calo

left with intra-event fluctuations

Applications:
Pileup subtraction in pp collisions
Heavy-ion underlying-event subtraction
(watch out for the flucts.)
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FastJet 3

FastJet 3.0.1 just released together with the manual [arXiv:1111.6097]

Interface: a jet knows about its structure, e.g.

clust seq.constituents(jet);

→ jet.constituents();

Generic additional info in PseudoJet: jet.extra info()

Improved bkgd subtraction: (e.g. local ranges, rescaling, ...)

JetMedianBackgroundEstimator

GridMedianBackgroundEstimator

Subtractor

FastJet substructure tools e.g. Filter + taggers

Check out http://www.fastjet.fr (feedback welcome)

– p. 28

http://www.fastjet.fr


Backup slides
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Alternative subtraction schemes

ATLAS

cluster the jets

in each calo rapidity strip
compute average cell Et

exclude jets with
Emax
T /〈ET 〉 > Dcut(= 5)

recompute average cell Et

iterate cut

subtract that average
from the jets

CMS

in each calo rapidity strip
compute 〈Et〉 and σET

subtract 〈Et〉+ σET

from each cell

cluster the jets

exclude jets with ET >10 GeV

iterate

Noise removal
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Alternative subtraction schemes

ATLAS

cluster the jets

in each calo rapidity strip
compute average cell Et

exclude jets with
Emax
T /〈ET 〉 > Dcut(= 5)

recompute average cell Et

iterate cut

subtract that average
from the jets

CMS

in each calo rapidity strip
compute 〈Et〉 and σET

subtract 〈Et〉+ σET

from each cell

cluster the jets

exclude jets with ET >10 GeV

iterate

Noise removal

Similar to jet-area-based less flucts. but potential bias

requires a calorimeter/grid input
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Noise removal from CMS subtraction

Subtracting 〈Etower
T 〉+ σtower implies (roughly):

Keeping “background cells” above the threshold

〈δpnoiset,jet 〉 ≃ 0.0833σtowerNtower ≃ 8− 16 GeV

Throwing away part of the jet (f ≡occupancy)

〈δphardt,jet 〉 ≃ −f σtowerNtower

Vacuum QCD: f ≃ 0.1 i.e. cancels the one above

Consequences:

Noise reduction: σnoise−suppr.
jet ≃ 0.26σtower

√
Ntower vs.

σjet ≃ σtower
√
Ntower

potential bias, especially, f for quenched jets?
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But...

Q: Not all jets should be smeared!

A: Yes, they should! Smearing should be proportional
to

√

Ajet but we checked it has no influence
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But...

Q: Not all jets should be smeared!

A: Yes, they should! Smearing should be proportional
to

√

Ajet but we checked it has no influence

Q: Your toy calorimeter is too noisy and unlike ours!

A: Is it?
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EM scale i.e. not easily ex-
trapolated to the full answer
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But...

Q: Not all jets should be smeared!

A: Yes, they should! Smearing should be proportional
to

√

Ajet but we checked it has no influence

Q: Your toy calorimeter is too noisy and unlike ours!

A: Is it?

Q: Other measurements like the jet core fraction and
the R dependence of AJ go in the opposite
direction as expected from fluctuations!

A: Sure. These likely indicate some genuine
quenching effects. But quantitative understanding
would benefit from characterising the fluctuations.
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Last but not least

Q: σjet of 20 GeV is way too large and HYDJET has
too much fluctuations!

A: That is not what ALICE sees:

ALICE: single track embedded in 0-10% LHC
MC: single track embedded in 0-10% HYDJET
reconstruct and subtract (jet-area based)
look at ∆pt = pt,rec − pt,track

same cuts and subtraction details
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Last but not least

Q: σjet of 20 GeV is way too large and HYDJET has
too much fluctuations!

A: That is not what ALICE sees:
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Nearly-perfect agreement!
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Last but not least

Q: σjet of 20 GeV is way too large and HYDJET has
too much fluctuations!

A: That is not what ALICE sees:
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ALICE  = 11.5 GeV

σjet(chg)
HYDJET = 11.4 GeV

ALICE
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track→jet, charged→all, calorimeter −→ σjet ∼ 17 GeV
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At the end of the day

Fluctuations can significantly affect the
measured AJ ⇒ quantify fluctuations
important to quantify quenching

ALICE produced the first measurement of flucts
agrees with flucts having significant impact
first step towards understanding flucts
Could a calorimetry upgrade help?

– p. 34
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