Rapidity Gap Distributions in ATLAS

Oldřich Kepka

(Institut of Physics, Academy of Sciences, Prague)

November 29, 2011, Workshop on QCD and Diffraction, Cracow

ATLAS Conf Note: ATLAS-CONF-2011-059

Soft Diffraction at the LHC

- Total cross-section at 7 TeV
 - 20% elastic, 80% of inelastic

Diffractive fraction: $\sigma_D/\sigma_{inel} \sim 0.2-0.3$

• Single Diffraction (SD) $pp \rightarrow pX$

$$\xi_X = M_X^2/s$$

Double Diffraction (DD) pp → XY

$$\xi_Y = M_Y^2/s$$

- At LHC, M_X , M_Y range from $m_p + m_\pi \rightarrow \sim 1 TeV$
- Large uncertainties in cross section, especially DD

Modeling of Soft Diffraction

Factorize SD into a pomeron (IP) flux and total p+IP cross section

Calculate SD cross section from triple pomeron amplitudes

- Implemented in PHOJET, PYTHIA models
- In reality $\alpha(0) \neq 1$... seen by ATLAS
- Deviation from triple-pomeron approach?

How to see diffraction – Forward Gaps

- No proton tag SD data yet available → ALFA, AFP (future upgrade)
- Cross section vs. forward gap size

$$\Delta \eta \propto \log(1/\xi)$$

$$\frac{d\sigma}{d\xi} \propto \frac{1}{\xi} \Rightarrow \frac{d\sigma}{d\Delta\eta} \sim \text{flat}$$

- ξ relates to rapidity gap size inside detector (|η|<4.9 calorimeter)
- Acceptance $10^{-6} < \xi < 10^{-2}$
- Equivalently in terms of diffractive mass 7<~M_X<~700 GeV

Forward Gap Detector Definition

- Measurement using Minimum Bias Trigger Scintilator (MBTS)
 - Acceptance 2.09<|η|<3.84
 - Close to 100% efficiency for non-diffractive

- Gap = Largest empty space on positive or negative side
 - Detector gap definition
 - Calorimeter:
 - no cell above threshold $E/\sigma > S_{th}$
 - prb of noisy cell in ring smaller then 10⁻⁴
 - electronic noise only, no pile-up environment
 - Tracker:
 - no good track above $p_T > 200 \text{ MeV } |\eta| < 2.5$

Differential Gap Cross Section

- Differential in gap size Δη_F
- $\Delta \eta_F$ extends from $\eta=\pm 4.9$ to first particle with $p_T > p_T^{cut}$
- Measured gaps up to size $0<\Delta\eta_{\scriptscriptstyle F}<8$
- 4 different kinematic phase-spaces
 - $-200 \text{ GeV} < p_{\tau} < 800 \text{ GeV}$
- Data corrected for detector effect to hadron level

ATLAS: Forward Gap Cross Section

- Systematics uncertainties: ~8% large gaps ~20% around $\Delta \eta_{\scriptscriptstyle F}$ ~1.5
- Small gaps sensitive to fluctuations in hadronization
- Large gaps dominated by SD and DD (M_Y <~ 7GeV)

Small Gaps

- Big differences between models in modeling ND component
- Sensitive to tunning of MC in forward region
- PYTHIA8 best describes the data at small gaps
- PHOJET best at large gaps (but fails at low end completely)

Herwig++: Cluster Fragmentation Model

- H++ does not contain model of soft diffraction, but exhibits production of large gap above measured rate and a bump around $\Delta \eta_{\text{F}}$ =6
 - => Gap spectrum is a very good observable to check Cluster Model
- Effect not due to Color Reconnection (CR recent add-on to H++)
- Removing events with zero soft or semi-hard scatters also did not remove large gaps

9

Increasing the $p_{\scriptscriptstyle T}^{\;\; cut}$ defining gaps

Increasing the $p_{\scriptscriptstyle T}^{\;\;\text{cut}}$ defining gaps

- As the p_T^{cut} increases, data show larger gaps
- Distributions probe the particle p_T^{cut} spectrum in forward region
- Sensitive to hadronization fluctuation and underlying event

- Important to measure gaps down to low p_⊤ to see diffraction
- Diffractive/non-diffractive processes barely distinguished at p_T^{cut} = 800 GeV

Large gaps

- Diffractive plateau ~1mb per unit of gaps size for $\Delta \eta_F > 3$
- PHOJET too small in the tail
- PYTHIA too high (DD contribution larger than in PHOJET)

Dynamics of large gaps

- PYTHIA has $\alpha_{IP}(0) = 1.0$
- Donnachie-Landshoff flux has $\alpha_{IP}(0)=1.085$
- Data laying somewhere in between these models ...

Link to Total Inelastic Cross Section

- Current picture on the total cross section (TOTEM)
- ATLAS and CMS central values lower than TOTEM
 - after extrapolation to low ξ region below $\xi=1x10^{-6}$ (extrapolation error dominant)

Uncertainties in Low ξ Extrapolation

- Cross section integrated up to some max $\Delta\eta_{\text{F}}$ (equivalently min $\xi_{\text{X}})$ and compared with TOTEM
- Indication that small ξ_x region underestimated in PHOJET and PHYTHIA:

-14 mb with ξ < 10⁻⁵, compared to 6 (3) mb in PYTHIA (PHOJET)

Summary

- Soft diffractive processes measured in ATLAS
 - Crucial: response to single particles in forward calorimeters under control down to 200 MeV
- Small non-zero gaps sensitive to hadronization / underlying event
- Large gaps probe the diffractive dynamics
- => Probes of soft MC models → tuning
- Compare with TOTEM → constrains of low mass diffraction

- Data to be included in HepData with all components of systematics uncertainties
 - allow theorists to fully interpret the data

Additional Material

Inelastic Cross-Section Measurement

- Defined within MBTS acceptance (M_x>15.7 GeV)
 - At least 2 MBTS hits

 Background and trigger efficiency measured in Data

$$\sigma(\xi > 5 \times 10^{-6}) = \frac{N - N_{BG}}{\epsilon_{trig} \times \int Ldt} \frac{1 - f_{\xi < 5 \times 10^{-6}}}{\epsilon_{sel}}$$

 Luminosity from Beam Scan Calibration

- Correction factors taken from MC, detector response tuned to Data
- Dataset: 1.2 M Events
 (2nd day of 7 TeV LHC stable beams, 2010)
- Default model used
 Donnachie and Landshoff
 with ε = 0.084, α' = 0.25 GeV⁻²

Inclusive and Single-Sided Samples

 For most of the distribution, models span the Data

- Single-Sided sample (N_{SS}):
 requires hit on one side of MBTS only
 - Dominated by diffraction
- Used to constrain contribution of diffractive events to inclusive sample

Diffractive Fraction

 Fractional contribution of diffractive events (f_D) varies significantly between models

$$R_{ss}(f_D) = \frac{N_{SS}}{N_{inc}}$$

$$= \frac{A_{SS}^D f_D + A_{SS}^{ND} (1 - f_D)}{A_{inc}^D f_D + A_{inc}^{ND} (1 - f_D)}$$

- Constrain f_D by finding

 a value which reproduces
 the ratio of single-sided to
 inclusive event sample
 (R_{ss}) seen in Data
- Default model yields: $f_D = 26.9 + 2.5^{-1.0} \%$

 Calculate MC dependent corrections with tuned model

Results

The cross-section is obtained using

$$- \varepsilon_{sel} = 98.8\%$$

$$- \varepsilon_{trig} = 99.8\%$$

$$- f_{\xi<5\times10^{-}6} = 1 \%$$

$$0.4 \% Correction factor small$$

- Luminosity 20 μb⁻¹

$\sigma(\xi > 5 \times 10^{-6}) \text{ [mb]}$	
ATLAS Data 2010	$60.33 \pm 2.10 (\text{exp.})$
Schuler and Sjöstrand	66.4
Рнојет	74.2
Ryskin et al.	51.8 - 56.2

 Default PYTHIA/PHOJET above Data, analytic calculation of Ryskin et al. below Data

Extrapolation to σ_{inel}

• To compare with previous experiments, Data are extrapolated using DL

default model (+15%)

- Other models range from 5% to 25%

- Systematic uncertainty taken as 10%

$\sigma(\xi > m_p^2/s) \text{ [mb]}$	
ATLAS Data 2010	$69.4 \pm 2.4 (ext{exp.}) \pm 6.9 (ext{extr.})$
Schuler and Sjöstrand	71.5
Рнојет	77.3
Block and Halzen	69
Ryskin et al.	65.2 - 67.1
Gotsman et al.	68
Achilli et al.	60 - 75

- Good agreement with most of the models
- Data lower than PHOJET

Comparison: Other Experiments

Extrapolated value:

$$69.4 \pm 2.4 (\text{exp.}) \pm 6.9 (\text{extr.})$$

- Fiducial cross-section
- \bullet 60.33 \pm 2.10(exp.)
 - by factor 3 more precise than extrapolated value

- Presented first measurement of inelastic cross-section
 - Data lower than MC predictions, extrapolated value agrees with models

The Gap Measurement

- Truth gap definition
 - No stable particle above p_⊤>200 MeV

$$\left[\frac{d\sigma}{d\Delta\eta^F}\right]^i = \frac{\mathcal{M}^{ij}}{\Delta\eta_{ring} \times \int Ldt} \left[\frac{N - N_{BG}}{\epsilon}\right]^j$$

- Background and trigger efficiency from Data
- MBTS selection efficiency from MC
- Account for migration of events (Bayesian unfolding)

