Theoretical Tools for (Hard) Diffraction at LHC

Radek Žlebčík
Charles University, Prague Krakow 2011

Factorisation in Diffraction

- The simple idea of using diffractive PDF from ep (as in non-diffractive case) to predict pp diffractive cross-section does not work (at Tevatron by factor up to 10)

Diffractive $e p \stackrel{\text { DPDF }}{\square} p p$
- To calculate the suppression factors for different beam energies and different final state kinematics is a great theoretical challenge
- On the other hand, theoretical predictions based on factorization theorem can be compared with measurements and then used to estimate suppression factors.

Suppression factor for certain process:

$$
S^{2}=\frac{\sigma(\text { data })}{\sigma(\text { theory })}
$$

Based on ep DPDFs

Tests of Diffractive Factorisation

- Diffractive factorisation successfully tested for dijet production and D* production in DIS by H1 and ZEUS
- HERA DPDF fails to predict hadron-hadron diffractive cross sections!

Suppression factor for certain process:

$$
S^{2}=\frac{\sigma(\text { data })}{\sigma(\text { theory })}
$$

Based on ep DPDFs

> Tevatron
> $S^{2} \approx 0.1$
β-dep. factor

MC and NLO Advantages/Disadvantages (pp at LHC)

MC

- Event-to-event generation
- ME in LO
- Parton-showers
- Hadronisation implemented
- Used for detector simulation+simulation of hadronisation effects

NLO

- Analytical calculations
- ME in NLO
- Complicated (non-existing) matching of ME with corresponding NLO parton-showers
- Only at parton level
- Used for calculation of crosssections at parton-level

Single-Diffractive Dijet Analysis at Tevatron

CDF Collaboration, Phys. Rev. Lett. 84, 5043 (2000)

- The first NLO calculations for this process performed by M. Klasen (arXiv:0908.2531)
- However the data cross-section was obtained with symmetric E_{T} jet cuts of 7 GeV
- Asymmetric cuts used only in calculations (7 GeV, 6.6 GeV) \rightarrow comparison with data problematic

My Goal

- The implementation of NLO calculations for single-diffractive dijet production in pp
- Studies of cuts for jets for NLO calculations
- Comparison of RAPGAP MC and POMWIG for single-diffractive dijet production in pp

NLO Single-Diffractive pp Calculations for ATLAS

- Analysis of low-luminosity ATLAS data in progress. Single-diffractive events selected by rapidity gap method, cuts for first and second jets are different to have proper NLO predictions
- FRIXIONE and NLOJET++ modified for single diffraction by slicing in ξ ($=x_{I P}$) variable and compared each other and with RAPGAP MC without parton-showers

$$
\xi=1-\frac{E_{p}^{\prime}}{E_{p}} \quad Z_{I P}=\frac{\sum_{j e t s}\left(E+P_{z}\right)_{i}}{2 \xi E_{\text {beam }}}
$$

Modification of pp NLO for diffraction

Single-diffraction in resolved pomeron model effectively corresponds to collision of:

$+$| proton | $E_{p}=E^{\text {beam }}$ | $f_{p}\left(x, \mu^{2}\right)$ |
| :--- | :--- | :--- |
| pomeron | $E_{I P}=\xi E^{\text {beam }}$ | $f_{I P}\left(z, \mu^{2}\right)$ |

$$
E_{C M S}=\sqrt{\xi} E_{C M S}^{0} \quad \eta_{C M S}=-\frac{1}{2} \log \frac{1}{\xi}
$$

Slicing in ξ variable (consistent with chosen ξ binning), x-section of A in bin i given by factorization formula

$$
\sigma_{A_{i}}=\sum_{j} f_{I P / p}^{|t|<\left|t_{0}\right|}\left(\xi_{j}\right) \sigma_{A_{i}}^{\xi_{j}} \Delta \xi_{j}
$$

Pomeron flux

NLO is run for each slice j separately

Two NLO QCD programs used:

- NLOJET++ (in C++, Z. Nagy)
- FRIXIONE (in Fortran, S. Frixione, G. Ridolfi)
- Analysis routines in C++, Fortran respectively

NLOJET++ 2D $E_{T}^{\text {jet1,2 }}$ X-Section

- Total x-section with symmetric cuts negative!

Single-diffraction Leading proton goes to positive z direction
$\begin{gathered} E_{T}^{\text {jet1 ,2 }}>20 \mathrm{GeV} \\ -5<\eta^{\text {jet1,2 }}<3 \\ \xi<0.03 \\ \|t\|<1 \mathrm{GeV}^{2} \end{gathered}$

Anti-kT jet alg - R=0.6
Cuts proposed by
Birmingham ATLAS group
Cutting this dangerous area makes the total x-section positive

NLOJET++ - Safe $E_{T}^{\text {jets, cut }}$ Difference?

- $E_{T}^{\text {jet1 }}$ must have typical exponential shape

$$
\begin{aligned}
& \text { Anti-kT R=0.6 } \\
& E_{T}^{\text {jel1 cut }}=26 \mathrm{GeV}
\end{aligned}
$$

- Jet algorithm absorbs infrared divergences

Small R \rightarrow Divergences remain unabsorbed

$$
\begin{aligned}
& \text { Cuts as before: } \\
& \begin{array}{c}
E_{T}^{\text {jet1,2 }}>20 \mathrm{GeV} \\
-5<\eta^{\text {jet1,2 }}<3 \\
\xi<0.03 \\
|t|<1 \mathrm{GeV}^{2}
\end{array}
\end{aligned}
$$

NLOJET++ ξ and Scale Dependence of $E_{T}^{\text {jets, cut }}$

- The larger the hard QCD scale \rightarrow Smaller coupling \rightarrow better-converging perturbative series
- Larger ξ requires a little bit larger $E_{T}^{\text {jets }}$ cut difference

NLOJET++

. Even with "Safe" Jet Cuts Some Distributions Unphysical (similar in FRIXIONE)

$$
\begin{gathered}
\text { Cuts: } \\
E_{T}^{\text {jet1 }}>30 \mathrm{GeV} \\
E_{T}^{\text {jet2 }}>20 \mathrm{GeV} \\
-5<\eta^{\text {jet1,2 }}<3 \\
\xi<0.03 \\
|t|<1 \mathrm{GeV}^{2}
\end{gathered}
$$

$\eta^{\text {jet1 }}$ with scale error bars

$\eta^{\text {jet2 }}$ with scale error bars

NLOJET++ vs FRIXIONE vs RAPGAP

- RAPGAP at parton-level without showers
- Normalization difference 7 \% (NLOJET++ vs FRIXIONE)

Comparison of MCs

- POMWIG vs RAPGAP at hadron-level with parton-showers
- NLOJET++ in LO at parton-level

RAPGAP shifted to positive rapidities

Why is RAPGAP so Different?

- Because of initial-state parton showers

RAPGAP

In-showers
lower

Mean Eta of Jets

Xpom (Xi)

Invariant Mass of Dijets System

p_{T} of The Hard Subprocess

- Strange behavior for distribution containing initial showers in RAPGAP

Energy Flow for Non-Diffractive pp RAPGAP

- Unphysical asymmetry in eta observed
- Without cuts on jets

Transverse Energy Flow (Initial-State Showers) - $\mathrm{p}_{\mathrm{T}}>77 \mathrm{GeV}$

Conclusions

- NLOJET++ and FRIXIONE NLO QCD programs implemented and studied for singlediffractive pp interaction 3.5+3.5 TeV
- Comparison of RAPGAP and POMWIG done
- Bug in RAPGAP? (Hannes Jung contacted)

