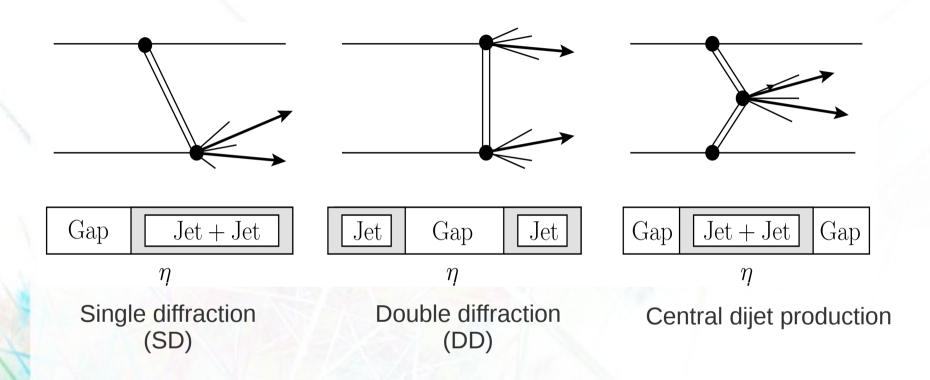


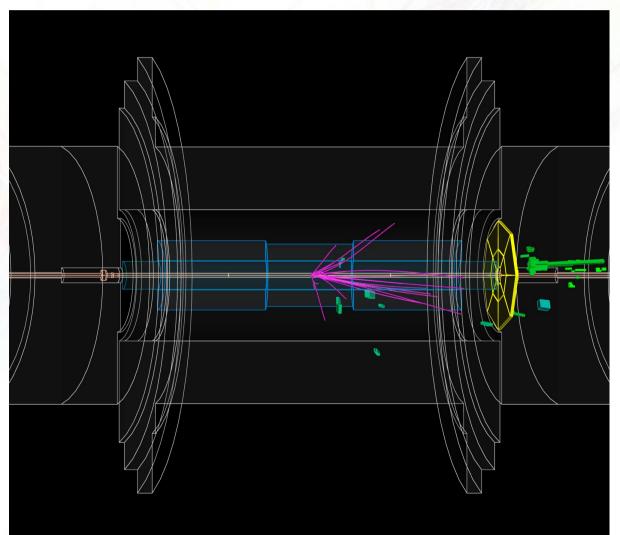
Herwig and Pythia modelling in diffractive dijets


Vlastimil Kůs, Oldřich Kepka, Marek Taševský

Institute of Physics Academy of Sciences of the Czech Republic

29th November 2011

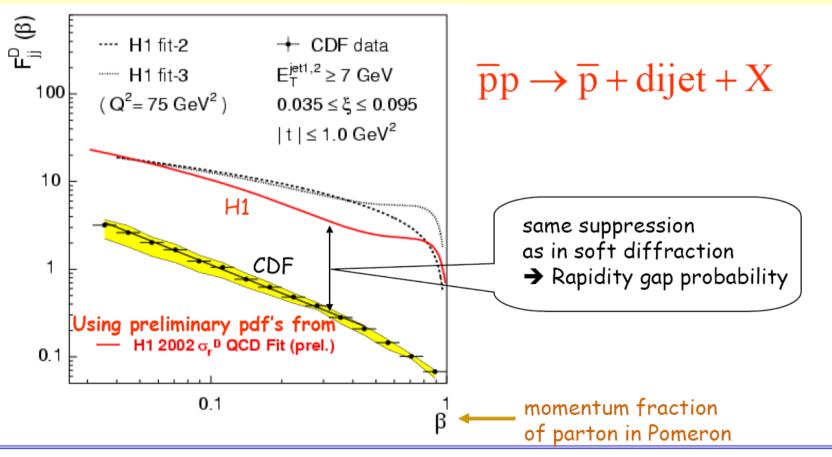
Workshop on QCD and diffraction at the LHC


Diffractive dijets

- typical signature no hadronic activity in large areas of η
 - → rapidity gaps
- low pile-up required

Gap reconstruction and visualisation

• forward rapidity gap ($\Delta\eta_{\rm F}$) = a bigger distance from the edge of the detector to the closest cluster or track with p_>200 MeV



Motivation

Run I

Diffractive Structure Function

Breakdown of QCD factorization

FP@LHC, 6-8 DEC 2008

DIFFRACTIVE W / Z and GAPS at CDF II

K. GOULIANOS

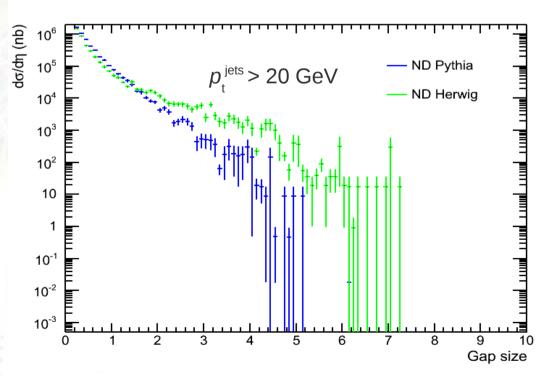
3

Goals and motivations

- The aim is to study hard single diffraction in di-jet events of 7TeV LHC data
- Main motivation measurements of diffractive structure function <u>dPDF</u> and gap survival probability (S²) in pp collisions (KMR prediction for 7TeV is 5-7%)
- In this talk study of gap spectra on generator level of Herwig++ and Pythia 6 Monte Carlos as a preparation for request of an official ATLAS MC production
- Working team Institute of Physics (ASCR in Prague)

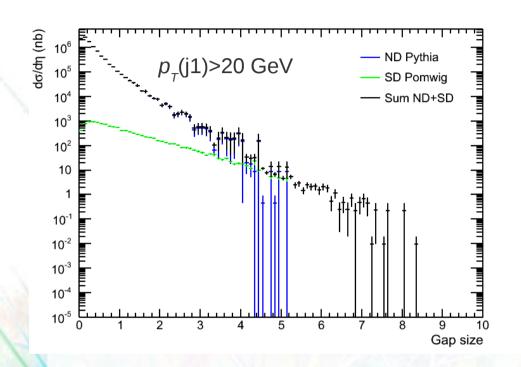
Vlastimil Kůs, Marek Taševský, Oldřich Kepka

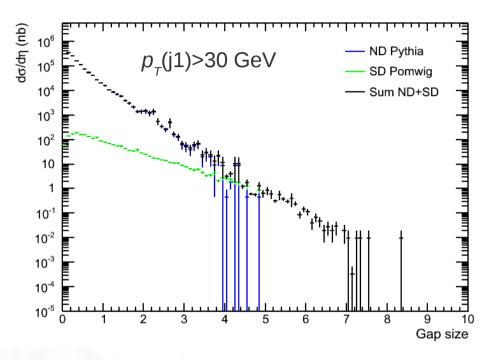
Vlasta Kůs


MC truth studies

- Truth studies of Pythia 6, Herwig++ and Pomwig based on private production (Herwig++ ... update UE-EE-3 Tune, version 2.5.1)
- Event selection dijet events, $p_{_{\rm T}}^{_{\rm jets}} > 20~{\rm GeV}$ (jet reconstruction algorithm FastJet 3.0.0)
- Gap definition largest gap (with no stable truth particle with $p_{\scriptscriptstyle T}$ >200 MeV) to the edge of detector
- Significant <u>discrepancies</u> especially between <u>ND Herwig and Pythia</u> observed!
 - ND Herwig provides much slower gap spectrum fall

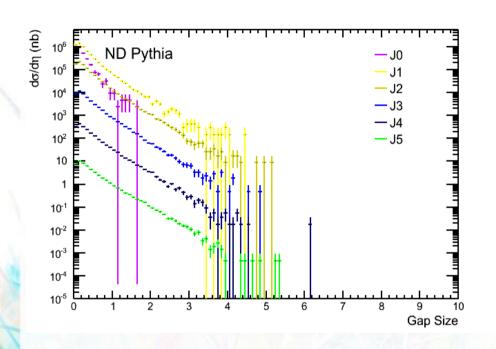
Probable explanation:
difference in <u>hadronisation models</u>

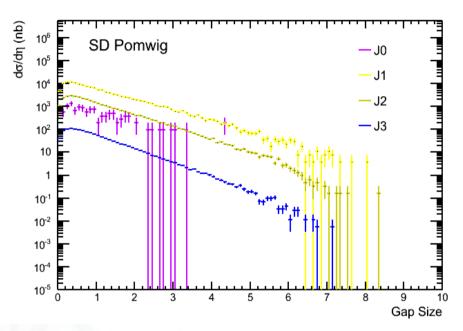

Herwig++: *clustering hadr.* (smaller p_{\perp} /multiplicities in fwd region)


Pythia: string hadronization

Gap spectra

Truth level


Plots <u>include</u> KMR prediction of S^2 (gap survival probability) for CMS energy 7 TeV proton-proton collisions ... $\underline{S^2} = 6 \%$


Significant gap spectra fall with increasing $p_{_{\rm T}}$ cut, no plateau observed due to the presence of hard dijet system.

By using 20 GeV jet cut we gain about one order of magnitude in σ compared to 30 GeV cut. Not possible to go below 20 GeV – no JES available.

Gap spectra for separate Jx samples

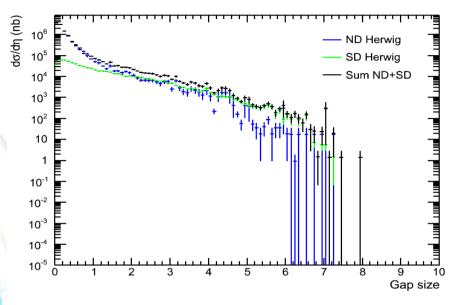
Truth level

Cut: $p_{\tau}(j1) > 20 \text{ GeV}$

SD Pomwig: $S^2 = 6$ % factor not included

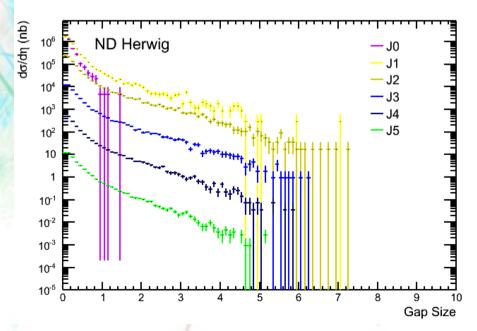
A need for millions of events for each J0, J1 and J2 samples.

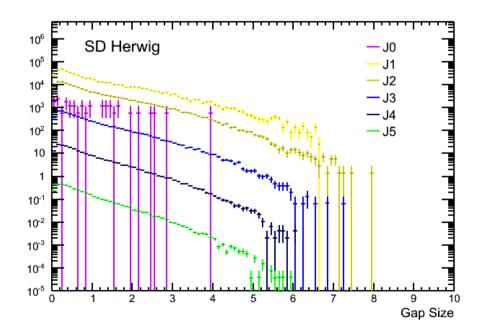
J0 ... 8 - 17 GeV


J1 ... 17 - 35 GeV

J2 ... 35 – 70 GeV

J3 ... 70 - 140 GeV


ND and SD Herwig++ events


Truth level

All plots for $p_{T}^{\text{jet}} > 20 \text{ GeV}$, S^2 factor **not** applied

Herwig++ results give significantly different predictions that would make SD practically unobservable.

Gap spectrum - summary

Truth level

Cross-sections (nb) for $\Delta \eta_{\rm gap}$ >3 and $\rho_{\rm T}^{\rm jet}$ >20GeV, S^2 = 0.06

	J0	J1	J2	J3
ND Pythia	0	131	22.6	1.4
SD Pomwig	29	643	104	2.5
SD Pomwig * S ²	1.7	38.6	6.2	0.15

In total ... SD / ND = 0.3

Cross-sections (nb) for $\Delta \eta_{\rm gap}$ >4 and $\rho_{\rm T}^{\rm jet}$ >20GeV, S^2 = 0.06

	J0	J1	J2	J3
ND Pythia	0	14.6	3.5	0.2
SD Pomwig	14.8	208	27.5	0.5
SD Pomwig * S ²	0.9	12.5	1.6	0.03

In total ... SD / ND = 0.8

Vlasta Kůs

SD/ND ratio expected < 1 also for data => a need for <u>additional selection</u> <u>cut</u> to suppress ND dijets and preserve good yields of SD $(x_{Bi}, ...)$

10

Summary

- Millions of ND events needed to explore (with reasonable precision) gap spectrum contribution of ND events on a tail (range 4-6 in $\Delta\eta_{\rm F}$)
- Significantly different predictions of gap spectra between ND Herwig++ and ND Pythia 6 due to different hadronisation models; ND Herwig++ goes ~ 2 values in $\Delta\eta_{_{\rm F}}$ to higher gaps
 - => another motivation for performing these measurements
- In order to achieve observation of hard SD, one needs to study gaps at least above $4 \Rightarrow SD/ND$ ratio with inclusion of KMR's S^2 prediction (6%) is $SD/ND \sim 0.8 \Rightarrow$ additional cut(s) to get ND suppresion needed $(x_{Ri}, ...)$

Vlasta Kůs

BACKUP

Truth gaps: all particles vs $p_{\scriptscriptstyle \perp}$ >200MeV particles

Vlasta Kůs 13