

SwissFEL Test Injector BPMs

E-XFEL BPMs

SwissFEL BPMs

Summary & Outlook

PSI Electron BPM Systems & Design Activities

<u>Accelerator</u>	<u>1st Beam</u>	<u># BPMs</u>	<u>Status / Activity</u>
SLS	2000	~140 (button, reson. stripline)	Digital BPM system since 2000. 2011: Start design of new BPM electronics. SLS Linac: FEL BPM test area.
SwissFEL Test Injector	2010	~25 (reson. stripline,)	19 resonant stripline BPMs in operation. Test area for cavity & button BPMs.
E-XFEL	2014/15	~410 (button, cavity)	PSI provides BPM electronics for ~290 buttons & ~120 dual-resonator cavities.
SwissFEL	2016	~150 (cavity, stripline)	Adaptation of E-XFEL cavity pickups & electronics to lower charge & shorter bunch spacing.

BPM electronics PSI in-house designs, except ~30 re-entrant cavity BPM RFFE in E-XFEL (C. Simon, CEA/Saclay).

Introduction SwissFEL Test Injector BPMs E-XFEL BPMs SwissFEL BPMs Summary & Outlook

SwissFEL Test Injector

- Goal: R&D for SwissFEL.
- Beam since 2010.
- E_{max} ~250MeV, 1 bunch, 10Hz.
- 10-200pC.

Choice of BPM & Electronics Type

Goal: Want "robust" standard BPM.

- Moderate resolution: ~10µm.
- Large position & charge range: ±10mm, 10-200pC.
- Needed ~20 BPM working 9/2010 (too early to use E-XFEL designs ...).

Solution: Re-use/modify existing PSI pickup & electronics

- Pickup = 500MHz resonant stripline (used in SLS linac).
- Electronics = 5GSPS digitizer mezzanine + generic "VPC" FPGA carrier board (modified PSI muon detector digitizer).

Resonant Stripline Pickup

- Already used in SLS linac & transfer lines.
- Optimized for SwissFEL test injector: frequencies, tuners, tolerances, ...

Resonant Stripline BPM System

- RFFE filters, stretches & amplifies 500MHz ringing signal from pickup.
- Digitizer: Direct sampling with 5GSPS, no mixer.
- FPGA on VME carrier: Amplitude & position calculation.

7

Resonant Stripline BPM: Electronics Modules

 PSI in-house design, incl.
 5GSPS analog waveform sampling chip (originally designed for low-cost sampling of some 1000 photomultiplier signals at MuGamma experiment).

Analog Waveform Sampling Chip

Low-cost 5 GSample/s Domino Ring Sampler (DRS) Chip - Principle

[S. Ritt, "Design and Performance of the 5 GHz Waveform Digitizing Chip DRS3", *IEEE Nucl. Sc. Symp. Conf.*, Honolulu, 26. Oct - 3. Nov. 2007]

Signal Waveforms

11

Position Resolution

- 7um RMS noise from 5-500pC (dominated by DRS chip sampling jitter).
- 30um RMS noise at 1pC (thermal noise ~1/Q).
- For 16.2mm geometry factor (45° strip angles), >20mm pp-range.

Charge Resolution

• Correlation of adjacent BPMs: ~4fC RMS noise @ 400fC bunch charge

Introduction SwissFEL Test Injector BPMs E-XFEL BPMs SwissFEL BPMs Summary & Outlook

E-XFEL

- L ~ 3400m. 17.5GeV. SASE <0.1nm.
- Trains of ~2800 bunches @ 10Hz.
- ~222ns min. bunch spacing.

E-XFEL BPMs: Collaboration Team and Deliverables

Preliminary	<u>Count</u>	<u>Pickup /</u> <u>Mechanics</u>	<u>RF Front-End</u> <u>Electronics</u>	<u>ADC, Digital</u> <u>Back-End</u> <u>Electronics</u>	<u>FPGA</u> <u>Firmware/</u> <u>Software</u>
Cold Button	56	DESY**	PSI	PSI	PSI
Re-Entrant Cavity	26	CEA/Saclay**	CEA/Saclay**	PSI	PSI
Warm Button *	237	DESY**	PSI	PSI	PSI
Transfer Line Cavity	24	DESY**	PSI	PSI	PSI
Undulator Cavity	98	DESY**	PSI	PSI	PSI

* Different types / pipe apertures needed (beam dump: 100mm, transfer lines: 40.5mm, ...)
** See talks from D. Lipka & C. Simon

- Modular electronics, common "generic" digital back-end.
- Pickup-specific RF front-ends.
- Common hardware & firmware: Less work & costs.

BPM Performance Requirements

- Table from BPM CDR 2010. Preliminary (length, quantities, ...).
- Most values from beam dynamics work package (Decking et al.).

	Type	Quantity	Beam Pipe Diameter	Vacuum length	Single Bunch RMS Resolution	Averaged RMS Resolution over 1000 bunches of identiccal trains	Drift per 1 deg C, min 0.1 µm	Operation range for maximum resolution	Operation range providing reasonable signal	Linearity	x/y Crosstalk	Charge Dependence (dQ=10%)	Bunch to Bunch Crosstalk	Transverse Alignment Tolerance (RMS)	Pipeline Latency
			mm	mm	μm	μm	μm	mm	mm	%	%	μm	μm	μm	ms
Cold BPM	Button/Re- entrant	102	78	170	50	10	10	± 3.0	± 10	10	1	50	10	300	10
Gun BPM	Button	3	40.5	100	100	10	10	± 3.0	± 10	5	1	100	10	200	10
Standard BPM	Button	219	40.5	200/ 100[1]	50	10	10	± 3.0	± 10	5	1	50	10	200	10
Standard BPM	Button	6	100	200	100	10	10	± 5.0	± 20	10	1	100	10	200	10
Cavity BPM Beam	Cavity	12	40.5	255	10	1	1	± 1.0	± 2	2	1	10	1	200	10
Transfer Line					******	••••••	******								
Cavity BPM Undulator	Cavity	117	10	100 🕻	1	0.1	1	± 0.5	± 2	2	1	1	0.1	50	10

^[1] Warm button: Flanged version & welded version (where flanged is too long)

Boris Keil, PSI

Undulator Cavity BPM: Design

- Based on 4.8GHz SPring8/SCSS design.
- Adapted to E-XFEL (3.3GHz, ...).

Same BPM electronics for 10mm and 40.5mm aperture: <f_{cut-off}

Frequency (both resonators)	3.3GHz
Loaded Q (both resonators, desired mode)	~70
Q (uncoupled modes)	typ. 200-300
Sensitivity	2.9V/(nC*mm)
Thermal noise (lossless cables & electronics,)	55nm @ 20pC
Angle signal (90° to position signal)	1mm * dx/dz

Undulator Cavity BPMs (Cont'd)

Boris Keil, PSI

DITANET BPM Workshop

Jan. 17, 2012

Transfer Line Cavity BPM

- 3.3GHz, 40.5mm aperture.
- Used for: Transverse intra-train feedback, energy measurements, launch jitter control & correction (energy, BAM, linac entry, ...), optics measurements, ...

Similar to undulator type, slightly less resolution (~20%). Main differences: ~16x more angle signal (\rightarrow align 16x better), cavity spacing (\rightarrow crosstalk).

Frequency (both resonators)	3.3GHz	
Loaded Q (both resonators, desired mode)	~70	
Q (uncoupled modes)	typ. 200-300	
Sensitivity	2.5V/(nC*mm) 🗸
Thermal noise (lossless cables & electronics,)	65nm @ 20p	C
Angle signal (90° to position signal. Cause: Misalignment)	~16mm * dx/o	dz DESY

Cold & Warm Button BPM

- Cold Button : Aperture 78mm.
- Warm Button: Aperture 40.5mm (transfer line), 100mm (beam dump).
- Version with and without flange (space requirements ...).
- Warm Button: ~3x better position resolution @ low charge than cold button (aperture: 2x, button size: 1.5x).

Prototype installed at FLASH, test with beam (April/May 2011)

D. Lipka et al.

Modular BPM Unit ("MBU")

- 19" housing, power supply, fans, ...
- Contains 4 button RF front-ends (RFFEs), or 2 cavity RFFEs, or combination.
- Common digital-back-end FPGA board (GPAC = Generic PSI ADC carrier) + two ADC mezzanines.

Control, timing & feedback interfaces: Multi-gigabit fiber optic links. Multiprotocol & baud rate support (PCI-e, Ethernet, ...)

Boris Keil, PSI

DITANET BPM Workshop

Button BPM RFFE

- Input filter (bandpass, 1.3GHz notch, ...).
- Variable gain stage (>40dB), calibration pulser.
- Peak detector with hold capacitor. Discharge: Automatic (resistor) or triggered (GPAC FPGA).
- Status: PCB being soldered, lab & beam test Q1-2/2012. Modular design: Fast design iterations (if needed).

Button BPM RFFE (Cont'd): Input filter

- Dispersive input filter stretches button pickup pulse.
- Eases signal handling (linearity/saturation, ...).
- Bandwidth >1GHz: More energy, better low-charge resolution.

Button BPM RFFE : PCB Floor Plan

Boris Keil, PSI

Button BPM Algorithm Concept

Undulator Cavity BPM RFFE

Undulator Cavity BPM RFFE

- 2nd version (2011): Active temperature stabilization, solid shielding, ADC clock synthesis, more gain ranges, ...
- Beam tests: 1-2µm RMS noise @ FLASH without adjusting gain, delays, LO, ... (1 shift, lack of time ...) → expect < 1µm if adjusted.
- Lab & beam test with properly adjusted/calibrated RFFE ongoing.

Undulator & Button BPM ADC Mezzanines

Cavity BPMs: 6-channel, 16-bit, 160MSamples/s.

Button BPMs: 8-channel, 12-bit, 500MSamples/s.

Both types: Differential coax inputs, 150ps step clock phase adjust per ADC.

Cavity BPM Electronics: ADC Mezzanine Board

Digital Back-End (GPAC) FPGA Board: Hardware

- Mid 2010: First prototype delivered to PSI.
- Only faults found & fixed: Few capacitor values (time constant for power-up) changed, EEPROM replaced (was too small).
- Working fine, extensive tests done. Now: Focus on firmware/software & long-term beam tests.

X-ray quality control

(RAMs, connector)

Boris Keil, PSI

E-XFEL Cavity BPM: Test @ SwissFEL Test Injector

• Status: Waiting for beam for multi-BPM noise correlation (after shutdown).

MBU For Two Cavity BPMs: Beam Test @ SLS Linac

Reference cavity signal splitter

Boris Keil, PSI

E-XFEL Cavity BPM: Latest Beam Test @ SLS Linac

Introduction SwissFEL Test Injector BPMs E-XFEL BPMs SwissFEL BPMs Summary & Outlook

39

<u>SwissFEL</u>

- L~700m. 5.8GeV. SASE, λ_{min} =0.1nm.
- Trains of 2 bunches (1 per undulator).
- ~28ns bunch spacing, 100Hz.
- 10-200pC.

Quantities

	Inner Pipe Diameter						
Machine Section	38mm	16mm	8mm	Sum			
Gun	1			1			
Injector	15	6		21			
BC1	2			2			
Linac1		22		22			
BC2	2			2			
Linac2		12		12			
Linac3		14		14			
Aramis Collimator & Matching		10		10			
Aramis Undulator			21	21			
Aramis Beam Dump		2		2			
Athos Switchyard / Transfer Line		36		36			
Athos Undulator			14	14			
Athos Dump		2		2			
<u>Overall</u>	<u>20</u>	<u>104</u>	<u>35</u>	<u>159</u>			

Machine Section	ВРМ Туре	Inner Pipe Diameter	#	Length	Noise & Drift 10-200pC	Comment
Injector + Bunch Compr.	Dual-Resonator Cavity	38mm	20	255mm	<10um	Alternative: resonant stripline
Linac + Transfer Lines	Dual-Resonator Cavity	16mm	104	150mm	<3-5um	Alternative: resonant stripline
Undulators	Dual-Resonator Cavity	8mm	35	100mm	<1um	

Differences to E-XFEL

- Official charge range: 10-200pC. But: Trend to shorter bunches & lower charge. Be prepared for ~2pC ...
- Linac: 2 bunches, 28ns spacing, 100Hz.
- Officially: 1 Bunch in undulators (distribution kicker).

BPM System

- Injector: Keep resonant striplines (+ E-XFEL button elec.), or use 2-resonator 3.3GHz cavity (budget-dependent ...).
- Undulators + Linac: Baseline = 2-resonator cavity BPM.
- Based on E-XFEL systems, but adapted to low charge, shorter bunch spacing, different timing/control system, ...

SwissFEL Undulator Pickup: Position Cavity

- Option 1: Use optimized 3.3GHz version. RF design finished (Fabio Marcellini, HFSS). Now production in PSI workshop, then beam test.
- Option 2: Use higher frequency (e.g. 4.8GHz). Being investigated.

Electrical Parameters	Stainless Steel	Copper coated		Geometrical Parameters	[mm]
Frequency	3.301	3.305	P	R	37
[GHz]			2wgW	L	15
\mathbf{Q}_{L}	69	79		G	7
S ₁₁	0.1369	0.0190		т	7
R _s /x [Ω/m]	44.9	51.4	b	wgW	34
R/Q/x [Ω/m]	0.65	0.65		wg H	4
Q _e	160	162		wg L	25
Sensitivity —	9.35	9.30	a 😝	а	6.5
[V/nC/mm]	-3x higher tl	nan E-XFE	L: 340nm RMS @ 10pC with 20dB	b	25
n	nargin for ca	ble/noise.	Penalty: More angle sensitivity	Fabio M	arcellini

Boris Keil, PSI

SwissFEL Undulator Pickup: Reference Cavity

Introduction SwissFEL Test Injector BPMs E-XFEL BPMs SwissFEL BPMs Summary & Outlook

Summary & Outlook

- SwissFEL Test Injector BPMs: Goal achieved using robust "proven" (non-final) electronics allows to work on E-XFEL & final SwissFEL designs without being bothered by operators ⁽²⁾
- E-XFEL button electronics: Test start Q1/2012. Could also be used for SwissFEL injector resonant striplines (to be tested).
- E-XFEL 3.3GHz cavity BPMs: Lab & single-pickup beam tests promising. Next steps: Multi-pickup correlation, long-term test with beam (SwissFEL test injector, then FLASH), userfriendly operation & automation.
- Final SwissFEL cavity BPMs: Sub-µm resolution <10pC feasible keeping 3.3GHz E-XFEL frequency. Higher frequency, impact & removal of angle signal (digitally/mechanically) to be investigated.

PSI Team & Credits

E-XFEL/SwissFEL BPM Electronics:

Raphael Baldinger (Electronics Tech.) Robin Ditter (Electronics Tech.) Waldemar Koprek (Firmware/Software Engineer) Reinhold Kramert (Electronics Eng., MBU) Goran Marinkovic (Firmware/Software Engineer) Markus Roggli (Electronics Eng., ADCs) Markus Stadler (RF Engineer, Cavity Electronics) Daniel Treyer (RF Engineer, Button & Stripline Electronics)

SwissFEL BPM Pickups:

Fabio Marcellini (RF Engineer, INFN / PSI guest scientist, Cavity BPMs)
Martin Rohrer (Mech. Engineer)
Micha Dehler (RF Engineer, Resonant Stripline)
Alessandro Citterio (RF Group, Resonant Stripline)

And:

Thanks also to Volker Schlott & SER, support from other PSI/GFA groups, DESY E-XFEL diagnostics team (E-XFEL pickups) & Claire Simon/CEA (re-entrant E-XFEL BPM pickup & RFFE).

Thank you for your attention!

Supplementary Slides ...

RF BPMs: Pickup Types

Beam Position = k * $(V_{x1}-V_{x2})/(V_{x1}+V_{x2})$. Factor k (~10mm) determined by geometry.

<u>RF BPMs: Pickup Types (Cont'd)</u>

Boris Keil, PSI

DITANET BPM Workshop

51

RF BPMs: Pickup Types (Cont'd)

Low cost:	Standard BPM	В	est resolution, lowest d	rift: Undulator BPM
Pickup	Button	Matched Stripline	Resonant Stripline	Cavity
Spectrum				
Monopole Mode Suppression	Modal (hybrid) / electronics	Modal (hybrid) / electronics	Modal (hybrid) / electronics	Modal (coupler), frequency, phase (sync. det.)
Typical RMS Noise, 10pC, <u>*20mmpipe*</u>	~200µm	<80µm	<4µm	~1µm
Typical Electronics Frequency	300800MHz	300800MHz	500-1500MHz	3-6GHz

"Typical" noise: Examples & estimates (scaling, ...) based on existing systems, not theoretical limit ...

Boris Keil, PSI

RF BPMs: Pickup Types (Cont'd)

- Buttons: Moderate resolution @ low charge. O.K. with long bunch trains (E-XFEL): Averaging.
- Striplines (matched + resonant): Better low-charge SNR that buttons (resonant: >10x). O.K. for low-charge single-bunch injector/linac/transfer lines.
- Single-resonator cavity + normal couplers: Commonmode suppression limits performance.
- Dual-resonator cavity + mode-suppressing couplers: Optimal performance (common mode suppression, drift, ...), highest SNR.

Undulator BPM for LCLS, SACLA, E-XFEL, SwissFEL, ...

Systematic & Random Sampling Jitter

DRS Chip: Features and Characteristics

- 8 channels, 1024 samples/channel.
- Max. sample rate 5 GSa/s, on-chip PLL.
- Usable input bandwidth > 500 MHz.
- Random jitter (2 4 ps rms) limits SNR.
- Deterministic jitter (50 ps rms) removed by calibration and real-time spline interpolation via FPGA FW/SW.

