

Introduction on Pick-up Types and their Suitability for various Applications Genève, 16th of January, 2012 Peter Forck

Gesellschaft für Schwerionenforschung GSI, Darmstadt

Outline:

- **Signal generation transfer impedance**
- **Capacitive shoe box BPM for low frequencies electro-static approach**
- **Capacitive button BPM for high frequencies electro-static approach**
- \triangleright Stripline BPM \rightarrow traveling wave
- \triangleright Cavity BPM \rightarrow resonator for dipole mode

Summary

re es m

Usage of BPMs

A *B***eam** *P***osition** *M***onitor is an non-destructive device for bunched beams**

It has a low cut-off frequency i.e. dc-beam behavior can not be monitored The abbreviation BPM and pick-up PU are synonyms

1. It delivers information about the transverse center of the beam

- *Trajectory:* Position of an individual bunch within a transfer line or synchrotron
- *Closed orbit*: central orbit averaged over a period much longer than a betatron oscillation
- \triangleright *Single bunch position* \rightarrow determination of parameters like tune, chromaticity, *β*-function
- \triangleright Bunch position on a large time scale: bunch-by-bunch \rightarrow turn-by-turn \rightarrow averaged position
- \triangleright Time evolution of a single bunch can be compared to 'macro-particle tracking' calculations
- Feedback: fast bunch-by-bunch damping *or* precise (and slow) closed orbit correction
- **2. Information on longitudinal bunch behavior**
- **Bunch shape and evolution** during storage and acceleration
- For proton LINACs: the beam **velocity** can be determined by two BPMs
- For electron LINACs: **Phase** measurement by Bunch Arrival Monitor
- *Relative* low current measurement down to 10 nA.

FE 52 1F

Model for Signal Treatment of capacitive BPMs

The wall current is monitored by a plate or ring inserted in the beam pipe:

At a resistor \vec{R} the voltage U_{im} from the image current is measured. The transfer impedance *Z^t* is the ratio between voltage *Uim* and beam current *Ibeam* in *frequency domain*: $U_{im}(\omega) = R \cdot I_{im}(\omega) = Z_{t}(\omega, \beta) \cdot I_{beam}(\omega)$.

Capacitive BPM:

•The pick-up capacitance *C*: plate \leftrightarrow vacuum-pipe and cable. $I_{im}(t)$ •The amplifier with input resistor *R*. •The beam is a high-impedance current source: $I_{im} = \frac{R}{1 + i\omega RC} \cdot I_{im}$ $U_{im} = \frac{R}{1 + R}$. $=$ $1+i\omega$ \ddag *i* ω RC ground *A* 1 1 $\frac{\partial RC}{i\omega RC}\cdot I_{beam}$ ω $=\frac{11}{2} \cdot \frac{1}{2} \cdot \frac{1}{2}$. $2\pi a$ βc C $1+i\omega$ *a* βc *C* 1 $\ddot{}$ π a Bo $\equiv Z_i(\omega, \beta) \cdot I_{beam}$ This is a high-pass characteristic with *ωcut= 1/RC: A* 1 1 $\omega/$ ω / ω Amplitude: $|Z_t(\omega)| = \frac{A}{2} \cdot \frac{1}{2} \cdot \frac{1}{C} \cdot \frac{\omega}{\sqrt{2\pi}}$ Phase: $\varphi(\omega) = \arctan(\omega_{cut}/\omega)$ *cut* $| Z_{i}(\omega) |$ *Z* ω \int_t^t (w) $\vert - \frac{1}{2\pi a} \cdot \frac{1}{\beta c} \cdot \frac{1}{C}$

P. Forck, DITANET Workshop January 2012 4 Suitability of various BPM Types

2

 $\pi\!a$ $\beta\!c$

 $1 + \omega^2 / \omega^2$

 $\overline{+}$

 ω / ω

cut

EXAMPLE

equivalent circuit

Example of Transfer Impedance for Proton Synchrotron

The high-pass characteristic for typical synchrotron BPM:

Calculation of Signal Shape: Bunch Train

Parameter: $R = 50 \Omega \Rightarrow f_{cut} = 32 \text{ MHz}, C = 100 \text{ pF}, l = 10 \text{ cm}, \beta = 50 \%, \sigma_t = 100 \text{ ns}$

 \triangleright Fourier spectrum is composed of lines separated by acceleration $f_{\eta f}$

- Envelope given by single bunch Fourier transformation
- \triangleright Differentiated bunch shape due to $f_{cut} \gt f_{rf}$
- Typical observation bandwidth 10∙*frf* for broadband observation.

65 I

Principle of Position Determination with BPM

The difference between plates gives the beam's center-of-mass **most frequent application**

'Proximity' effect leads to different voltages at the plates:

 $S(f, x)$ is called **position sensitivity**, sometimes the inverse is used $k(f, x) = 1/S(f, x)$ *S* is a geometry dependent, non-linear function, which have to be optimized. Units: $S = \frac{8}{\text{mm}}$ and sometimes $S = \frac{d}{dE}$ and or $k = \text{mm}$.

FE 52 1F

Characteristics for Position Measurement

Position sensitivity: Factor between beam position & signal quantity defined as $S_x(x, y, f) = -\frac{u}{L_x} (\Delta U_x / \Sigma U_x)$ *d* $S_x(x, y, f)$

Accuracy: Ability for position reading relative to a mechanical fix-point ('absolute position') *dx*

 \triangleright influenced by mechanical tolerances and alignment accuracy and reproducibility by electronics: e.g. amplifier drifts, electronic interference, ADC granularity defined as $S_x(x, y, f) = \frac{d}{dx} (\Delta U_x / \Sigma U_x) = [% /mm]$
Accuracy: Ability for position reading relative to a mechanical fix-point ('absolute
or
Precision, by electronics: e.g. amplifier drifts, electronic interference, ADC granu
 or Precision

Resolution: Ability to determine small displacement variation ('relative position')

 \triangleright typically for *single bunch*: 10⁻³ of aperture $\approx 100 \mu m$

averaged: 10^{-5} of aperture \approx 1 μm, *typical goal:* 1 % of beam width $\Delta x \approx 0.01$ σ

 \triangleright in most case much better than accuracy!

 \triangleright electronics has to match the requirements e.g. bandwidth, ADC granularity...

Bandwidth: Frequency range available for measurement

has to be chosen with respect to required resolution via analog or digital filtering **Dynamic range:** Range of beam currents the system has to respond

 \triangleright position reading should not depend on input amplitude

Signal-to-noise: Ratio of wanted signal to unwanted background

- \triangleright influenced by thermal and circuit noise, electronic interference
- \triangleright can be matched by bandwidth limitation

P. Forck, DITANET Workshop January 2012 8 Suitability of various BPM Types

re es m

Introduction on Pick-up Types and their Suitability for various Applications

Outline:

- **Signal generation transfer impedance**
- **'Shoe box' BPM = 'linear cut' BPM electro-static approach used at most proton synchrotrons due to linear position reading**
- **Capacitive button BPM for high frequencies electro-static approach**
- **≻ Stripline BPM → traveling wave**
- \triangleright Cavity BPM \rightarrow resonator for dipole mode
- **Summary**

re es m

Shoe-box BPM for Proton or Ion Synchrotron

Frequency range: 1 MHz $\langle f_{rf} \rangle$ 10 MHz \Rightarrow bunch-length \gg BPM length.

P. Forck, DITANET Workshop January 2012 10 Suitability of various BPM Types

Technical Realization of Shoe-Box BPM

Technical realization at HIT synchrotron of 46 m length for 7 MeV/u \rightarrow 440 MeV/u BPM clearance: 180x70 mm², standard beam pipe diameter: 200 mm.

P. Forck, DITANET Workshop January 2012 11 Suitability of various BPM Types

FEE II

Technical Realization of Shoe-Box BPM

Technical realization at HIT synchrotron of 46 m length for 7 MeV/u \rightarrow 440 MeV/u BPM clearance: 180x70 mm², standard beam pipe diameter: 200 mm.

P. Forck, DITANET Workshop January 2012 12 Suitability of various BPM Types

Other Types of diagonal-cut BPM

Round type: cut cylinder

Same properties as shoe-box:

Other realization: Full metal plates

- \rightarrow No guard rings required
- \rightarrow but mechanical alignment more difficult

Wounded strips:

Same distance from beam and capacitance for all plates But horizontal-vertical coupling.

re es m

Introduction on Pick-up Types and their Suitability for various Applications

Outline:

- **Signal generation transfer impedance**
- **Capacitive 'Shoe box' BPM = 'linear cut' BPM electro-static approach used at most proton synchrotrons due to linear position reading**
- **Button BPM for high frequencies electro-static approach used at most proton LINACs and most electron accelerators**
- \triangleright Stripline BPM \rightarrow traveling wave
- \triangleright Cavity BPM \rightarrow resonator for dipole mode
- **Summary**

re es m

Button BPM Realization

G S II

2-dim Model for Button BPM

 \overline{a}

button

beam

'Proximity effect': larger signal for closer plate Ideal 2-dim model: Cylindrical pipe \rightarrow image current density via 'image charge method' for 'pensile' beam:

$$
j_{im}(\phi) = \frac{I_{beam}}{2\pi a} \cdot \left(\frac{a^2 - r^2}{a^2 + r^2 - 2ar \cdot \cos(\phi - \theta)}\right)
$$

Image current: Integration of finite BPM size: $I_{im} = a \cdot \int_{-a}^{b}$ $/ 2$ $/ 2$ $\frac{\alpha}{2} j_{im}(\phi)$ $I_{im} = a \cdot \int_{-\alpha/2}^{\alpha/2} j_{im}(\phi) d\phi$

P. Forck, DITANET Workshop January 2012 16 Suitability of various BPM Types

P. Forck, DITANET Workshop January 2012 17 Suitability of various BPM Types

Ideal 2-dim model:

Due to the non-linearity, the beam size enters in the position reading.

Remark: For most LINACs: Linearity is less important, because beam has to be centered \rightarrow correction as feed-forward for next macro-pulse. r s r

Finite beam size:

Button BPM at Synchrotron Light Sources

Due to synchrotron radiation, the button insulation might be destroyed \Rightarrow buttons only in vertical plane possible \Rightarrow increased non-linearity Optimization: horizontal distance and size of buttons 0.8

From S. Varnasseri, SESAME, DIPAC 2005

 \succ -15 0.8 \triangleright Beam position swept with 2 mm steps

Non-linear sensitivity and hor.-vert. coupling At center $S_x = 8.5\%$ /mm in this case

horizontal :
$$
x = \frac{1}{S_x} \cdot \frac{(U_1 + U_4) - (U_2 + U_3)}{U_1 + U_2 + U_3 + U_4}
$$

vertical : $y = \frac{1}{S_y} \cdot \frac{(U_1 + U_2) - (U_3 + U_4)}{U_1 + U_2 + U_3 + U_4}$

 $1\vert 5$

P. Forck, DITANET Workshop January 2012 19 Suitability of various BPM Types

Comparison Shoe-Box and Button BPM

Introduction on Pick-up Types and their Suitability for various Applications

Outline:

- **Signal generation transfer impedance**
- **Capacitive 'Shoe box' BPM = 'linear cut' BPM electro-static approach used at most proton synchrotrons due to linear position reading**
- **Button BPM for high frequencies electro-static approach used at most proton LINACs and most electron accelerators**
- **≻ Stripline BPM → traveling wave**

 used at colliders & some acc. due to clean signal generation

- \triangleright Cavity BPM \rightarrow resonator for dipole mode
- **Summary**

re es m

Stripline BPM: General Idea

For short bunches, the *capacitiv***e** button deforms the signal

- \rightarrow Relativistic beam $\beta \approx I \Rightarrow$ field of bunches nearly TEM wave
- \rightarrow Bunch's electro-magnetic field induces a **traveling pulse** at the strips
- \rightarrow Assumption: Bunch shorter than BPM, $Z_{strip} = R_1 = R_2 = 50 \Omega$ and $v_{beam} = c_{strip}$.

From C. Boccard, CERN

r s r

For relativistic beam with $\beta \approx 1$ and short bunches:

 \rightarrow Bunch's electro-magnetic field induces a **traveling pulse** at the strip

 \rightarrow *Assumption:* l_{bunch} < < *l,* $Z_{strip} = R_1 = R_2 = 50 \Omega$ and $v_{beam} = c_{strip}$

Signal treatment at upstream port 1:

t=0: Beam induced charges at **port 1**: \rightarrow half to R_I , half toward **port 2**

t=l/c: Beam induced charges at **port 2**:

 \rightarrow half to R_2 , *but* due to different sign, it cancels with the signal from **port 1** \rightarrow half signal reflected

t=2·l/c: reflected signal reaches **port 1**

$$
\Rightarrow U_1(t) = \frac{1}{2} \cdot \frac{\alpha}{2\pi} \cdot Z_{strip} (I_{beam}(t) - I_{beam}(t - 2l/c))
$$

If beam repetition time equals 2·l/c: reflected preceding port 2 signal cancels the new one: \rightarrow no net signal at **port 1**

Signal at downstream port 2: Beam induced charges cancels with traveling charge from port 1 \Rightarrow Signal depends on direction \Leftrightarrow directional coupler: e.g. can distinguish between e⁻ and e⁺ in collider

L. Groening, Sept. 15th, 2003 GSI-Palaver, Dec. 10th, 2003, A dedicated proton accelerator for p-physics at the future GSI facilities P. Forck, DITANET Workshop January 2012 23 Suitability of various BPM Types

FE 52 H

Stripline BPM: Transfer Impedance

 $\triangleright Z_t$ show maximum at $l = c/4f = \lambda/4$ i.e. 'quarter wave coupler' for bunch train \Rightarrow *l* has to be matched to v_{beam}

No signal for *l=c/2f=λ/2* i.e. destructive interference with **subsequent** bunch

 \triangleright Around maximum of $|Z_t|$: phase shift $\varphi = 0$ i.e. direct image of bunch

 \triangleright *f*_{center}=1/4 ⋅ *c*/l ⋅ (2n-1). For first lope: f_{low} =1/2 f_{center} , f_{high} =3/2 ⋅ f_{center} i.e. bandwidth \approx 1/2 f_{center} \triangleright Precise matching at feed-through required t o preserve 50 Ω matching.

FSI

Stripline BPM: Finite Bunch Length

- \triangleright *Z*_{*t*}(*ω*) decreases for higher frequencies
- \triangleright If total bunch is too long $\pm 3\sigma_t > l$ destructive interference leads to signal damping *Cure:* length of stripline has to be matched to bunch length

L. Groening, Sept. 15th, 2003 GSI-Palaver, Dec. 10th, 2003, A dedicated proton accelerator for p-physics at the future GSI facilities P. Forck, DITANET Workshop January 2012 25 Suitability of various BPM Types

r s r

Realization of Stripline BPM

20 cm stripline BPM at TTF2 (chamber \varnothing 34mm) And 12 cm LHC type:

From . S. Wilkins, D. Nölle (DESY), C. Boccard (CERN)

 e^{-}

Comparison: Stripline and Button BPM (simplified)

TTF2 BPM inside quadrupole

From . S. Wilkins, D. Nölle (DESY)

L. Groening, Sept. 15th, 2003 GSI-Palaver, Dec. 10th, 2003, A dedicated proton accelerator for p-physics at the future GSI facilities P. Forck, DITANET Workshop January 2012 27 Suitability of various BPM Types

GST

Introduction on Pick-up Types and their Suitability for various Applications

Outline:

- **Signal generation transfer impedance**
- **Capacitive 'Shoe box' BPM = 'linear cut' BPM electro-static approach used at most proton synchrotrons due to linear position reading**
- **► Button BPM for high frequencies → electro-static approach used at most proton LINACs and most electron accelerators**
- \triangleright Stripline BPM \rightarrow traveling wave **used at colliders & some acc. due to clean signal generation**
- **⊳ Cavity BPM → resonator for dipole mode**

 used at FELs due to high resolution for short pulses

Summary

FE 52 10

Cavity BPM: Principle

High resolution on $t < 1$ µs time scale can be achieved by excitation of a dipole mode:

P. Forck, DITANET Workshop January 2012

Cavity BPM: Example of Realization

P. Forck, DITANET Workshop January 2012 $\, \, 30 \,$ Suitability of various BPM Types

Cavity BPM: Suppression of monopole Mode

Suppression of mono-pole mode: waveguide that couple only to dipole-mode

due to *fmono < fcut < fdipole*

Courtesy of D. Lipka and Y. Honda

Prototype BPM for ILC Final Focus

- \triangleright Required resolution of 2 nm in a 6 \times 12 mm diameter beam pipe
- Achieved World Record so far: **resolution** of 8.7 nm at ATF2 (KEK, Japan)

r e s

Summary: Comparison of BPM Types (simplified)

Remark: Other types are also some time used: e.g. wall current monitors, inductive antenna, BPMs with external resonator, slotted wave-guides for stochastic cooling etc.

P. Forck, DITANET Workshop January 2012 32 Suitability of various BPM Types

GST