

Introduction on Pick-up Types and their Suitability for various Applications Genève, 16th of January, 2012 Peter Forck

Gesellschaft für Schwerionenforschung GSI, Darmstadt

Outline:

- \succ Signal generation \rightarrow transfer impedance
- > Capacitive shoe box BPM for low frequencies \rightarrow electro-static approach
- > Capacitive button BPM for high frequencies \rightarrow electro-static approach
- \succ Stripline BPM \rightarrow traveling wave
- \succ Cavity BPM \rightarrow resonator for dipole mode

Summary

IS SS II

Usage of BPMs

A Beam Position Monitor is an non-destructive device for bunched beams

It has a low cut-off frequency i.e. dc-beam behavior can not be monitored The abbreviation BPM and pick-up PU are synonyms

1. It delivers information about the transverse center of the beam

- > *Trajectory:* Position of an individual bunch within a transfer line or synchrotron
- Closed orbit: central orbit averaged over a period much longer than a betatron oscillation
- Single bunch position \rightarrow determination of parameters like tune, chromaticity, β -function
- > Bunch position on a large time scale: bunch-by-bunch \rightarrow turn-by-turn \rightarrow averaged position
- > Time evolution of a single bunch can be compared to 'macro-particle tracking' calculations
- Feedback: fast bunch-by-bunch damping *or* precise (and slow) closed orbit correction
- 2. Information on longitudinal bunch behavior
- Bunch shape and evolution during storage and acceleration
- ➢ For proton LINACs: the beam velocity can be determined by two BPMs
- ➢ For electron LINACs: Phase measurement by Bunch Arrival Monitor
- *Relative* low current measurement down to 10 nA.

IS SS II

Model for Signal Treatment of capacitive BPMs

The wall current is monitored by a plate or ring inserted in the beam pipe:

At a resistor **R** the voltage U_{im} from the image current is measured. The transfer impedance Z_t is the ratio between voltage U_{im} and beam current I_{beam} in *frequency domain*: $U_{im}(\omega) = R \cdot I_{im}(\omega) = Z_t(\omega, \beta) \cdot I_{beam}(\omega)$.

Capacitive BPM:

•The pick-up capacitance *C*: plate \leftrightarrow vacuum-pipe and cable. •The amplifier with input resistor *R*. •The beam is a high-impedance current source: $U_{im} = \frac{R}{1+i\omega RC} \cdot I_{im}$ $= \frac{A}{2\pi a} \cdot \frac{1}{\beta c} \cdot \frac{1}{C} \cdot \frac{i\omega RC}{1+i\omega RC} \cdot I_{beam}$ $\equiv Z_t(\omega, \beta) \cdot I_{beam}$ This is a high-pass characteristic with $\omega_{cut} = 1/RC$:

Amplitude:
$$|Z_t(\omega)| = \frac{A}{2\pi a} \cdot \frac{1}{\beta c} \cdot \frac{1}{C} \cdot \frac{\omega / \omega_{cut}}{\sqrt{1 + \omega^2 / \omega_{cut}^2}}$$
 Phase: $\varphi(\omega) = \arctan(\omega_{cut} / \omega)$

P. Forck, DITANET Workshop January 2012

Suitability of various BPM Types

equivalent circuit

Example of Transfer Impedance for Proton Synchrotron

The high-pass characteristic for typical synchrotron BPM:

Calculation of Signal Shape: Bunch Train

Parameter: $R=50 \Omega \Rightarrow f_{cut}=32 \text{ MHz}$, C=100 pF, l=10 cm, $\beta=50 \%$, $\sigma_t=100 \text{ ns}$

> Fourier spectrum is composed of lines separated by acceleration f_{rf}

- Envelope given by single bunch Fourier transformation
- \triangleright Differentiated bunch shape due to $f_{cut} >> f_{rf}$
- Typical observation bandwidth ≈ 10 f_{rf} for broadband observation.

Principle of Position Determination with BPM

The difference between plates gives the beam's center-of-mass \rightarrow most frequent application

'Proximity' effect leads to different voltages at the plates:

S(f,x) is called **position sensitivity**, sometimes the inverse is used k(f,x) = 1/S(f,x)S is a geometry dependent, non-linear function, which have to be optimized. Units: S = [%/mm] and sometimes S = [dB/mm] or k = [mm].

G 55 H

Characteristics for Position Measurement

Position sensitivity: Factor between beam position & signal quantity

defined as $S_x(x, y, f) = \frac{d}{dx} (\Delta U_x / \Sigma U_x) = [\%/\text{mm}]$

Accuracy: Ability for position reading relative to a mechanical fix-point ('absolute position')

or → influenced by mechanical tolerances and alignment accuracy and reproducibility Precision → by electronics: e.g. amplifier drifts, electronic interference, ADC granularity

Resolution: Ability to determine small displacement variation ('relative position')

→ typically for *single bunch*: 10^{-3} of aperture ≈ 100 µm

averaged: 10⁻⁵ of aperture $\approx 1 \,\mu\text{m}$, *typical goal:* 1 % of beam width $\Delta x \approx 0.01 \cdot \sigma$

 \succ in most case much better than accuracy!

> electronics has to match the requirements e.g. bandwidth, ADC granularity...

Bandwidth: Frequency range available for measurement

➢has to be chosen with respect to required resolution via analog or digital filtering **Dynamic range:** Range of beam currents the system has to respond

➢ position reading should not depend on input amplitude

Signal-to-noise: Ratio of wanted signal to unwanted background

- ➢ influenced by thermal and circuit noise, electronic interference
- \succ can be matched by bandwidth limitation

Detection threshold = signal sensitivity: minimum beam current for measurement

P. Forck, DITANET Workshop January 2012

IS SS II

Introduction on Pick-up Types and their Suitability for various Applications

Outline:

- \blacktriangleright Signal generation \rightarrow transfer impedance
- ≻ 'Shoe box' BPM = 'linear cut' BPM → electro-static approach used at most proton synchrotrons due to linear position reading
- > Capacitive button BPM for high frequencies \rightarrow electro-static approach
- \succ Stripline BPM \rightarrow traveling wave
- > Cavity BPM \rightarrow resonator for dipole mode
- Summary

IS 55 H

Shoe-box BPM for Proton or Ion Synchrotron

Frequency range: 1 MHz $< f_{rf} < 10$ MHz \Rightarrow bunch-length >> BPM length.

P. Forck, DITANET Workshop January 2012

10

Suitability of various BPM Types

Technical Realization of Shoe-Box BPM

Technical realization at HIT synchrotron of 46 m length for 7 MeV/u \rightarrow 440 MeV/u BPM clearance: 180x70 mm², standard beam pipe diameter: 200 mm.

Technical Realization of Shoe-Box BPM

Technical realization at HIT synchrotron of 46 m length for 7 MeV/u \rightarrow 440 MeV/u BPM clearance: 180x70 mm², standard beam pipe diameter: 200 mm.

P. Forck, DITANET Workshop January 2012

Suitability of various BPM Types

Other Types of diagonal-cut BPM

Round type: cut cylinder

Same properties as shoe-box:

Other realization: Full metal plates

- \rightarrow No guard rings required
- \rightarrow but mechanical alignment more difficult

Wounded strips:

Same distance from beam and capacitance for all plates But horizontal-vertical coupling.

IS 55 H

Introduction on Pick-up Types and their Suitability for various Applications

Outline:

- \succ Signal generation \rightarrow transfer impedance
- ➤ Capacitive 'Shoe box' BPM = 'linear cut' BPM → electro-static approach used at most proton synchrotrons due to linear position reading
- ➤ Button BPM for high frequencies → electro-static approach used at most proton LINACs and most electron accelerators
- > Stripline BPM \rightarrow traveling wave
- \succ Cavity BPM \rightarrow resonator for dipole mode
- > Summary

IS 55 H

Button BPM Realization

P. Forck, DITANET Workshop January 2012

Suitability of various BPM Types

2-dim Model for Button BPM

-

a

button

beam

'Proximity effect': larger signal for closer plate Ideal 2-dim model: Cylindrical pipe \rightarrow image current density via 'image charge method' for 'pensile' beam:

$$j_{im}(\phi) = \frac{I_{beam}}{2\pi a} \cdot \left(\frac{a^2 - r^2}{a^2 + r^2 - 2ar \cdot \cos(\phi - \theta)}\right)$$

Image current: Integration of finite BPM size: $I_{im} = a \cdot \int_{-\alpha/2}^{\alpha/2} j_{im}(\phi) d\phi$

P. Forck, DITANET Workshop January 2012

Suitability of various BPM Types

P. Forck, DITANET Workshop January 2012

Suitability of various BPM Types

Ideal 2-dim model:

Due to the non-linearity, the beam size enters in the position reading.

Remark: For most LINACs: Linearity is less important, because beam has to be centered \rightarrow correction as feed-forward for next macro-pulse.

GSI

Finite beam size:

Button BPM at Synchrotron Light Sources

Due to synchrotron radiation, the button insulation might be destroyed \Rightarrow buttons only in vertical plane possible \Rightarrow increased non-linearity Optimization: horizontal distance and size of buttons 0.8

From S. Varnasseri, SESAME, DIPAC 2005

≻ -1.5 0.8 Beam position swept with 2 mm steps ► Non-linear sensitivity and hor.-vert. coupling At center $S_x = 8.5\%$ /mm in this case

horizontal :
$$x = \frac{1}{S_x} \cdot \frac{(U_1 + U_4) - (U_2 + U_3)}{U_1 + U_2 + U_3 + U_4}$$

vertical : $y = \frac{1}{S_y} \cdot \frac{(U_1 + U_2) - (U_3 + U_4)}{U_1 + U_2 + U_3 + U_4}$

Suitability of various BPM Types

15

P. Forck, DITANET Workshop January 2012

Comparison Shoe-Box and Button BPM

	Shoe-Box BPM	Button BPM	
Precaution	Bunches longer than BPM	Bunch length comparable to BPM	
BPM length (typical)	10 to 20 cm length per plane	Ø1 to 5 cm per button	
Shape	Rectangular or cut cylinder	Orthogonal or planar orientation	
Bandwidth (typical)	0.1 to 100 MHz	100 MHz to 5 GHz	
Coupling	1 M Ω or $\approx 1 \text{ k}\Omega$ (transformer)	50 Ω	
Cutoff frequency (typical)	0.01 10 MHz (<i>C</i> =30100pF)	0.31 GHz (<i>C</i> =210pF)	
Linearity	Very good, no x-y coupling	Non-linear, x-y coupling	
Sensitivity	Good, care: plate cross talk	Good, care: signal matching	
Usage	At proton synchrotrons, $f_{rf} < 10 \text{ MHz}$	All electron acc., proton Linacs, $f_{rf} > 100 \text{ MHz}$	
	vertical beam guard rings on		

Introduction on Pick-up Types and their Suitability for various Applications

Outline:

- \succ Signal generation \rightarrow transfer impedance
- ➤ Capacitive 'Shoe box' BPM = 'linear cut' BPM → electro-static approach used at most proton synchrotrons due to linear position reading
- ➢ Button BPM for high frequencies → electro-static approach used at most proton LINACs and most electron accelerators
- \succ Stripline BPM \rightarrow traveling wave

used at colliders & some acc. due to clean signal generation

- > Cavity BPM \rightarrow resonator for dipole mode
- Summary

IS SS II

Stripline BPM: General Idea

For short bunches, the *capacitive* button deforms the signal

- \rightarrow Relativistic beam $\beta \approx l \Rightarrow$ field of bunches nearly TEM wave
- \rightarrow Bunch's electro-magnetic field induces a **traveling pulse** at the strips
- \rightarrow Assumption: Bunch shorter than BPM, $Z_{strip} = R_1 = R_2 = 50 \Omega$ and $v_{beam} = c_{strip}$.

From C. Boccard, CERN

For relativistic beam with $\beta \approx l$ and short bunches:

 \rightarrow Bunch's electro-magnetic field induces a **traveling pulse** at the strip

 \rightarrow Assumption: $l_{bunch} << l$, $Z_{strip} = R_1 = R_2 = 50 \Omega$ and $v_{beam} = c_{strip}$

Signal treatment at upstream port 1:

t=0: Beam induced charges at **port 1**: \rightarrow half to R_1 , half toward **port 2**

t=l/c: Beam induced charges at **port 2**:

→ half to R₂, but due to different sign, it cancels with the signal from port 1
→ half signal reflected

t=2·l/c: reflected signal reaches **port 1**

$$\Rightarrow U_1(t) = \frac{1}{2} \cdot \frac{\alpha}{2\pi} \cdot Z_{strip} \left(I_{beam}(t) - I_{beam}(t - 2l/c) \right)$$

Signal at downstream port 2: Beam induced charges cancels with traveling charge from port 1 \Rightarrow Signal depends on direction \Leftrightarrow directional coupler: e.g. can distinguish between e⁻ and e⁺ in collider

G SS T

Stripline BPM: Transfer Impedance

➤ Z_t show maximum at $l=c/4f=\lambda/4$ i.e. 'quarter wave coupler' for bunch train ⇒ l has to be matched to v_{beam}

> No signal for $l=c/2f=\lambda/2$ i.e. destructive interference with subsequent bunch

> Around maximum of $|Z_t|$: phase shift $\varphi = 0$ i.e. direct image of bunch

 $Fightharpoints f_{center} = 1/4 \cdot c/l \cdot (2n-1)$. For first lope: $f_{low} = 1/2 \cdot f_{center}$, $f_{high} = 3/2 \cdot f_{center}$ i.e. bandwidth ≈ $1/2 \cdot f_{center}$ Fightharpoints Precise matching at feed-through required t o preserve 50 Ω matching.

Stripline BPM: Finite Bunch Length

- $> Z_t(\omega)$ decreases for higher frequencies
- → If total bunch is too long $\pm 3\sigma_t > l$ destructive interference leads to signal damping *Cure:* length of stripline has to be matched to bunch length

P. Forck, DITANET Workshop January 2012

Suitability of various BPM Types

Realization of Stripline BPM

20 cm stripline BPM at TTF2 (chamber Ø34mm) And 12 cm LHC type:

From . S. Wilkins, D. Nölle (DESY), C. Boccard (CERN)

P. Forck, DITANET Workshop January 2012

e⁻

Suitability of various BPM Types

Comparison: Stripline and Button BPM (simplified)

	Stripline	Button	
Idea	traveling wave	electro-static	
Requirement	Careful $Z_{strip} = 50 \Omega$ matching		
Signal quality	Less deformation of bunch signal	Deformation by finite size and capacitance	
Bandwidth	Broadband, but minima	Highpass, but <i>f_{cut}</i> < 1 GHz	
Signal strength	Large Large longitudinal and transverse coverage possible	Small Size <Ø3cm, to prevent signal deformation	
Mechanics	Complex	Simple	
Installation	Inside quadrupole possible ⇒improving accuracy	Compact insertion	
Directivity	YES	No	

TTF2 BPM inside quadrupole

From . S. Wilkins, D. Nölle (DESY)

P. Forck, DITANET Workshop January 2012

27

Suitability of various BPM Types

Introduction on Pick-up Types and their Suitability for various Applications

Outline:

- \succ Signal generation \rightarrow transfer impedance
- ➤ Capacitive 'Shoe box' BPM = 'linear cut' BPM → electro-static approach used at most proton synchrotrons due to linear position reading
- ➢ Button BPM for high frequencies → electro-static approach used at most proton LINACs and most electron accelerators
- ➤ Stripline BPM → traveling wave used at colliders & some acc. due to clean signal generation
- > Cavity BPM \rightarrow resonator for dipole mode

used at FELs due to high resolution for short pulses

Summary

IS SO II

Cavity BPM: Principle

High resolution on t < 1 µs time scale can be achieved by excitation of a dipole mode:

P. Forck, DITANET Workshop January 2012

Cavity BPM: Example of Realization

P. Forck, DITANET Workshop January 2012

Suitability of various BPM Types

Cavity BPM: Suppression of monopole Mode

Suppression of mono-pole mode: waveguide that couple only to dipole-mode

due to $f_{mono} < f_{cut} < f_{dipole}$

Courtesy of D. Lipka and Y. Honda

Prototype BPM for ILC Final Focus

- \triangleright Required resolution of 2 nm in a 6 \times 12 mm diameter beam pipe
- Achieved World Record so far: **resolution** of 8.7 nm at ATF2 (KEK, Japan)

Summary: Comparison of BPM Types (simplified)

Туре	Usage	Precaution	Advantage	Disadvantage
Shoe-box	p-Synch.	Long bunches $f_{rf} < 10 \text{ MHz}$	Very linear No <i>x-y</i> coupling Sensitive For large beams	Complex mechanics Capacitive coupling between plates
Button	p-Linacs, all e ⁻ acc.	Short bunches $f_{rf} > 10 \text{ MHz}$	Simple mechanics	Non-linear, <i>x-y</i> coupling Possible signal deformation
Stipline	colliders p-Linacs all e ⁻ acc.	best for $\beta \approx 1$, short bunches	Directivity 'Clean' signals Large Signal	Complex 50 Ω matching Complex mechanics
Cavity	e ⁻ Linacs (e.g. FEL)	Short bunches	Very sensitive	Very complex, high frequency

Remark: Other types are also some time used: e.g. wall current monitors, inductive antenna, BPMs with external resonator, slotted wave-guides for stochastic cooling etc.

P. Forck, DITANET Workshop January 2012

Suitability of various BPM Types