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Outline:      

 Signal generation   transfer impedance 

 Capacitive shoe box BPM for low frequencies  electro-static approach 
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Usage of BPMs 

 

 

 

 

 

A Beam Position Monitor is an non-destructive device for bunched beams  

It has a low cut-off frequency i.e. dc-beam behavior can not be monitored 

The abbreviation BPM and  pick-up PU are synonyms 
 

1. It delivers information about the transverse center of the beam  

 Trajectory: Position of an individual bunch within a transfer line or synchrotron 

 Closed orbit: central orbit averaged over a period much longer than  a betatron oscillation 

 Single bunch position  determination of parameters like tune, chromaticity, β-function 

 Bunch position on a large time scale: bunch-by-bunch  turn-by-turn  averaged position 

 Time evolution of a single bunch can be compared to ‘macro-particle tracking’ calculations 

 Feedback: fast bunch-by-bunch damping or precise (and slow) closed orbit correction   

2. Information on longitudinal bunch behavior  

  Bunch shape and evolution during storage and acceleration 

  For proton LINACs: the beam velocity can be determined by two BPMs 

  For electron LINACs: Phase measurement by Bunch Arrival Monitor  

  Relative low current measurement down to 10 nA. 
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Model for Signal Treatment of capacitive BPMs  

 

 

 

 

 

The wall current is monitored by a plate or ring inserted in the beam pipe: 

The image current Iim at the plate is given by the beam current and geometry: 

 

Using a relation for Fourier transformation: Ibeam = I0eiωt  dIbeam/dt = iωIbeam. 
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Transfer Impedance for capacitive BPM 

 

 

 

 

 

At a resistor R the voltage Uim from the image current is measured. 

The transfer impedance Zt is the ratio between voltage Uim and beam current Ibeam 

in frequency domain:  Uim(ω) = R · Iim(ω) = Zt(ω, β) · Ibeam(ω). 

This is a high-pass characteristic with  ωcut= 1/RC: 

Capacitive BPM:  

•The pick-up capacitance C:  

      plate ↔ vacuum-pipe and cable. 

•The amplifier with input resistor R. 

•The beam is a high-impedance current source: 
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Example of Transfer Impedance for Proton Synchrotron 

 

 

 

 

 

The high-pass characteristic for typical synchrotron BPM: 

Uim(ω) = Zt(ω)·Ibeam(ω) 
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Parameter for shoe-box BPM: 

C=100pF, l=10cm, β=50% 

fcut= ω/2π=(2πRC)-1 

for R=50   fcut= 32 MHz 

for R=1 M  fcut= 1.6 kHz 

Compromise   5 k by transformer e.g. Nprim/Nsec=3:30 

Impedance Zprim=(Nprim/Nsec)2∙Zsec voltage Uim=Nsec/Nprim ∙Uprim 
   Smooth signal chain, medium cut-off frequency, but lower usable voltage 

  

For acceleration frequency 10 MHz < frf < 10 MHz: 

Large signal strength but higher noise   high impedance    

Smooth signal transmission  50    
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Calculation of Signal Shape: Bunch Train 

 

 

 

 

 

Train of bunches with R=50  termination  f << fcut :  

Parameter: R=50   fcut=32 MHz, C=100 pF, l=10 cm, β=50 %, σt =100 ns 

)()()()()()( tUIZUItI imbeamtotimbeambeam   i nvFFTFFT Calculation: 

 Fourier spectrum is composed of lines separated by acceleration frf 

 Envelope given by single bunch Fourier transformation  

 Differentiated bunch shape due to fcut >> frf 

 Typical observation bandwidth  10∙frf for broadband observation.  
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Principle of Position Determination with BPM 

 

 

 

 

 

The difference between plates gives the beam’s center-of-mass  

most frequent  application 

S(f,x) is called position sensitivity, sometimes the inverse is used  k(f,x) = 1/S(f,x)  

S is a geometry dependent, non-linear function, which have to be optimized.  

Units: S = [%/mm] and sometimes S = [dB/mm] or k = [mm]. 

‘Proximity’ effect leads to different voltages at the plates: 
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It is at least: 

ΔU < ΣU/10 

y from ΔU = Uup - Udown 
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Characteristics for Position Measurement 

 

 

 

 

 

Position sensitivity: Factor between beam position & signal quantity 

                 defined as  

Accuracy: Ability for position reading relative to a mechanical fix-point (‘absolute position’) 

 influenced by mechanical tolerances and alignment accuracy and  reproducibility 

 by electronics: e.g. amplifier drifts,  electronic interference, ADC granularity 

Resolution: Ability to determine small displacement variation (‘relative position’) 

 typically for single bunch: 10-3 of aperture  100 μm 

     averaged: 10-5 of aperture 1 μm, typical goal: 1 % of beam width Δx ≈ 0.01·σ 

 in most case much better than accuracy! 

 electronics has to match the requirements e.g. bandwidth, ADC granularity…  

Bandwidth: Frequency range available for measurement 

has to be chosen with respect to required resolution via analog or digital filtering 

Dynamic range: Range of beam currents the system has to respond 

 position reading should not depend on input amplitude 

Signal-to-noise: Ratio of wanted signal to unwanted background 

  influenced by thermal and circuit noise, electronic interference  

  can be matched by bandwidth limitation 

Detection threshold = signal sensitivity: minimum beam current for measurement 
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Shoe-box BPM for Proton or Ion Synchrotron 

 

 

 

 

 

Frequency range: 1 MHz < frf < 10 MHz  bunch-length >> BPM length. 

Signal is proportional to actual plate length:  

 

 

  

In ideal case: linear reading  
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Shoe-box BPM: 

Advantage: Very linear, low frequency dependence 

        i.e. position sensitivity S is constant 

Disadvantage: Large size, complex mechanics 

                         high capacitance 

Size: 200x70 mm2 
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Technical Realization of Shoe-Box BPM 
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Technical realization at HIT synchrotron of 46 m length for 7 MeV/u440 MeV/u 

BPM clearance: 180x70 mm2, standard beam pipe diameter: 200 mm. 
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Technical realization at HIT synchrotron of 46 m length for 7 MeV/u440 MeV/u 

BPM clearance: 180x70 mm2, standard beam pipe diameter: 200 mm. 
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Other Types of diagonal-cut BPM 

Round type: cut cylinder 

Same properties as shoe-box: 

Wounded strips: 

Same distance from beam and 

capacitance for all plates 

But horizontal-vertical coupling. 
Vertical BPM 

Horizontal BPM 

Guard Ring Signal Out 

Other realization: Full metal plates 

 No guard rings required 

 but mechanical alignment more difficult 
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Button BPM Realization 

 

 

 

 

 

LINACs, e--synchrotrons: 100 MHz < frf < 3 GHz  bunch length  BPM length 

                       50  signal path to prevent reflections 

Button BPM with 50     
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Example: LHC-type inside cryostat:   

24 mm, half aperture a =25 mm, C =8 pF  

 fcut= 400 MHz, Zt = 1.3  above fcut   

Ø24 mm 

From C. Boccard (CERN) 
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2-dim Model for Button BPM  

 

 

 

 

 

‘Proximity effect’: larger signal for closer plate 

Ideal 2-dim model: Cylindrical pipe  image current density  

via ‘image charge method’ for ‘pensile’ beam: 
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2-dim Model for Button BPM 

In addition, frequency dependence can be calculated by analytic model or numerically. 

button 

Ideal 2-dim model: Non-linear behavior and hor-vert coupling:  

Sensitivity: x = 1/S · ΔU/ΣU   with S [%/mm] or [dB/mm] 

This example: center part S=7.4%/mm  k=1/S=14mm 

The measurement of U delivers:                          here Sx = Sx(x, y) i.e. non-linear. 
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button 
Beam envelope 

Image envelope 

Estimation of finite Beam Size Effect for Button BPM 

 

 

 

 

 

Ideal 2-dim model:  

Due to the non-linearity, the beam size enters in the position reading. 

 Finite beam size: 

Calculation of signal response 

   at different location 

‘Averaging’ of image position 

 Can not be corrected easily! 

Remark: For most LINACs: Linearity is less important, because beam has to be centered 

  correction as feed-forward for next macro-pulse. 

Image center 

beam center 
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Button BPM at Synchrotron Light Sources 
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Beam position swept with 2 mm steps 

Non-linear sensitivity and hor.-vert. coupling 

At center Sx = 8.5%/mm in this case 

From S. Varnasseri, SESAME, DIPAC 2005 

Due to synchrotron radiation, the button insulation might be destroyed  

buttons only in vertical plane possible  increased non-linearity 

Optimization: horizontal distance and size of buttons 
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Comparison Shoe-Box and Button BPM 

 

 

 

 

 

   Shoe-Box BPM Button BPM 

Precaution Bunches longer than BPM Bunch length comparable to BPM 

BPM length (typical) 10 to 20 cm length per plane 1 to 5 cm per button 

Shape Rectangular or  cut cylinder  Orthogonal or planar orientation 

Bandwidth (typical) 0.1 to 100 MHz 100 MHz to 5 GHz 

Coupling  1 M  or   1 k (transformer)  50  

Cutoff frequency (typical) 0.01… 10 MHz (C=30…100pF) 0.3… 1 GHz (C=2…10pF) 

Linearity Very good, no x-y coupling Non-linear, x-y coupling 

Sensitivity Good, care: plate cross talk  Good, care: signal matching 

Usage At proton synchrotrons,  

frf < 10 MHz  

All electron acc., proton Linacs,  

frf > 100 MHz  
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Introduction on Pick-up Types and  

their Suitability for various Applications  
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 Signal generation   transfer impedance 

 Capacitive ‘Shoe box’ BPM = ‘linear cut’ BPM  electro-static approach 

    used at most proton synchrotrons due to linear position reading 

 Button BPM for high frequencies  electro-static approach 

    used at most proton LINACs and most electron accelerators 

 Stripline BPM   traveling wave 

    used at colliders & some acc. due to clean signal generation 

 Cavity BPM    resonator for dipole mode 

 Summary 
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Stripline BPM: General Idea  

 

 

 

 

 

For short bunches, the capacitive button deforms the signal 

 Relativistic beam β1  field of bunches nearly TEM wave 

 Bunch’s electro-magnetic field induces a traveling pulse at the strips 

 Assumption: Bunch shorter than BPM, Zstrip=R1=R2=50  and vbeam=cstrip. 

LHC stripline BPM, l=12 cm 

From C. Boccard, CERN 
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Stripline BPM: General Idea  

 

 

 

 

 

For relativistic beam with β1 and short bunches: 

 Bunch’s electro-magnetic field induces a traveling pulse at the strip 

 Assumption: lbunch<< l,   Zstrip=R1=R2=50  and vbeam=cstrip  

Signal treatment at upstream port 1: 
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Signal at downstream port 2: Beam induced charges cancels with traveling charge from port 1   

 Signal depends on direction  directional coupler: e.g. can distinguish between e- and e+ in collider 

t=0: Beam induced charges at port 1: 
   half to R1, half toward port 2 

 

t=l/c: Beam induced charges at port 2:     
   half to R2,  but  due to different sign,  
       it cancels with the signal from port 1  
   half signal reflected 

t=2·l/c: reflected signal reaches port 1 

If beam repetition time equals 2·l/c: reflected preceding port 2 signal cancels the new one: 
   no net signal at  port 1 
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Stripline BPM: Transfer Impedance 

 

 

 

 

 

The signal from port 1 and the reflection from port 2 can cancel  minima in Zt . 

For short bunches Ibeam(t)  Ne · (t):   

 Zt show maximum at l=c/4f=λ/4 i.e. ‘quarter wave coupler’ for bunch train 
         l has to be matched to vbeam 

 No signal for l=c/2f=λ/2 i.e. destructive interference with subsequent bunch 

 Around maximum of |Zt|: phase shift φ=0 i.e. direct image of bunch 

 fcenter=1/4 ∙ c/l ∙ (2n-1). For first lope: flow=1/2∙fcenter, fhigh=3/2 ∙ fcenter i.e. bandwidth 1/2∙fcenter  

 Precise matching at feed-through required t o preserve 50  matching.  

Stripline length l=30 cm, α=100 
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Stripline BPM: Finite Bunch Length 

 

 

 

 

 

The signal at port 1 for a finite bunch of length σ:    .   

 Zt(ω) decreases for higher frequencies 

 If total bunch is too long  ±3σt > l destructive interference leads to signal damping  

     Cure: length of stripline has to be matched to bunch length 

Stripline length l=30 cm, α=100 
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Caution: Zt depends on beam’s bunch length σ  
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Realization of Stripline BPM 

 

 

 

 

 

20 cm stripline BPM at TTF2 (chamber 34mm) 

And 12 cm LHC type:  

From . S. Wilkins, D. Nölle (DESY), C. Boccard (CERN) 
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Comparison: Stripline and Button BPM (simplified) 

 

 

 

 

 

Stripline Button 

Idea traveling wave electro-static 

Requirement Careful Zstrip = 50  

matching 

Signal quality Less deformation of 
bunch signal 

Deformation by 
finite size and 
capacitance 

Bandwidth Broadband,  

but minima  

Highpass,  

but fcut < 1 GHz 

Signal 

strength 

Large 

Large longitudinal and 
transverse coverage 
possible 

Small 
Size <3cm,  

to prevent signal 
deformation 

Mechanics Complex Simple 

Installation Inside quadrupole 

possible 

improving accuracy 

Compact insertion 

Directivity YES No  From . S. Wilkins,  

D. Nölle (DESY) 

TTF2 BPM inside quadrupole  
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Introduction on Pick-up Types and  

their Suitability for various Applications  

Outline:      

 Signal generation   transfer impedance 

 Capacitive ‘Shoe box’ BPM = ‘linear cut’ BPM  electro-static approach 

    used at most proton synchrotrons due to linear position reading 

 Button BPM for high frequencies  electro-static approach 

    used at most proton LINACs and most electron accelerators 

 Stripline BPM   traveling wave 

    used at colliders & some acc. due to clean signal generation 

 Cavity BPM    resonator for dipole mode 

    used at FELs due to high resolution for short pulses 

 Summary 
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Cavity BPM: Principle 

 

 

 

 

 

High resolution on t < 1 μs time scale can be achieved by excitation of a dipole mode: 

TM01 

TM11 

TM02 

f / GHz 

U
 /

 V
 

TM010 

TM011 

TM020 

U~Q U~Qr U~Q 

Application:  

small e- beams  

and short pulses < ns 

(ILC, X-FEL…) 

‘δ-excitation’  

→oscillation with 
 Q  1000 and τ =2Q/2f  100 ns 

From D. Lipka, 

DESY, Hamburg 

For pill box the resonator modes given by geometry:  

monopole TM010 with f010 
    maximum at beam center  strong excitation 

Dipole mode TM011 with f011 
  minimum at center  excitation by beam offset  

 Detection of dipole mode amplitude  
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Cavity BPM: Example of Realization 

 

 

 

 

 

From M. Wendt (FNAL) 

FNAL realization: 

Cavity:  113 mm 

      Gap 15 mm 

Mono. f010=1.1GHz 

Dipole. f110=1.5GHz 

Qload  600 

With comparable BPM 

0.1 μm resolution 

    within 1 μs 

Basic consideration for detection of eigen-frequency amplitudes:  

Dipole mode f110 separated from  monopole mode  

     due to finite quality factor Q  Δf=f/Q  

 Frequency  f110  1…10 GHz 

Waveguide house the antennas  

   Task: suppression of TM010 mono-pole mode  

Gap 
15 mm  

Antenna for 
 monopole mode  

Antenna for 
 dipole mode  

Waveguide 
input for dipole 
mode  

Cavity Ø113mm  

Antenna for 
 dipole mode  

Beam pipe 

Ø39mm 

f010 f110 frequency 

A
m

p
l.
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Suppression of mono-pole mode: waveguide that couple only to dipole-mode 

due to fmono < fcut < fdipole 

Monopole Mode Dipole Mode 

Courtesy of D. Lipka, 

DESY, Hamburg 

Prototype BPM for ILC Final Focus 

 Required resolution of 2 nm in a 6 × 12 mm diameter beam pipe 

Achieved World Record so far: resolution of 8.7 nm at ATF2 (KEK, Japan) 

 

Courtesy of D. Lipka, 

DESY, Hamburg 

wave guide 

Mono-pole mode Dipole-pole mode 

Courtesy of D. Lipka & Y. Honda 

Courtesy of D. Lipka and Y. Honda 

Cavity BPM: Suppression of monopole Mode 
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Summary: Comparison of BPM Types (simplified) 

 

 

 

 

 

Remark: Other types are also some time used: e.g. wall current monitors, inductive antenna,  

BPMs with external resonator, slotted wave-guides for stochastic cooling etc.   

Type Usage Precaution Advantage Disadvantage 

Shoe-box p-Synch. Long bunches 

frf  < 10 MHz 

 

Very linear 

No x-y coupling 

Sensitive 

For large beams 

Complex mechanics 

Capacitive coupling                        

between plates 

Button p-Linacs, 

all e- acc. 

Short bunches 

frf  > 10 MHz 

Simple 

mechanics 

Non-linear, x-y coupling 

Possible signal 

deformation 

Stipline colliders  

p-Linacs 

all e- acc. 

best for β  1, 

short bunches 

Directivity 

‘Clean’ signals 

Large Signal 

Complex 50 Ω matching 

Complex mechanics 

Cavity e- Linacs 

(e.g. FEL) 

Short bunches Very sensitive Very complex,  

high frequency 


