

8th DITANET Topical Workshop on Beam Position Monitors 16-18 January 2012 Geneva, Switzerland

Beam Position Monitor for Low Energy Antiprotons at the USR

Janusz Harasimowicz University of Liverpool Cockcroft Institute

FAIR @ GSI

Facility for Antiproton and Ion Research

<u>U</u>ltra-low Energy <u>S</u>torage <u>R</u>ing

- Electrostatic ring
- Antiprotons & protons/ions
- Deceleration from
 300 keV to 20 keV
- Space charge limit:
 2×10⁷ p @ 20 keV
- Average currents:
 ~100 nA to ~1 μA

Beam Instrumentation

Capacitive Pick-Up

Problem Statement

- Beam currents: ~100 nA ~1 µA
- Beam energies: 20 keV 300 keV
- Rev. frequencies: ~50 kHz ~200 kHz
- Both cooled and uncooled beams
- Resolution: <0.5 mm
- Accuracy: <0.5 mm

Diagonally Cut Pick-Up

 $x = k_x(x, y) \cdot \frac{\Delta U_x}{\Sigma U_x}$ $y = k_y(x, y) \cdot \frac{\Delta U_y}{\Sigma U_y}$

 $\Sigma U = U_1 + U_2$

 $\Delta U = U_1 - U_2$

Diagonal cut:

$$k_x(x,y) = k_y(x,y) \equiv k = \text{const}$$

Diagonally Cut Pick-Up

 $x = k_x(x, y) \cdot \frac{\Delta U_x}{\Sigma U_x} \qquad \qquad \Sigma U = U_1 + U_2$ $y = k_y(x, y) \cdot \frac{\Delta U_y}{\Sigma U_y}$

 $\Delta U = U_1 - U_2$

ןR₿ $U_2(t)$ C Х ×С° С: RĽ $U_1(t)$

Diagonal cut:

$$k_x(x,y) = k_y(x,y) \equiv k = \text{const}$$

$$k = \frac{r}{1 - 2 \cdot s/l} \cdot (1 + 2 \cdot \frac{C_c}{C})$$

$$\hat{U} = \frac{1}{2} \cdot \frac{l}{C \cdot v} \cdot \bar{I}$$

Diagonally Cut Pick-Up

 $x = k_x(x, y) \cdot \frac{\Delta U_x}{\Sigma U_x}$ $y = k_y(x, y) \cdot \frac{\Delta U_y}{\Sigma U_y}$

 $\Sigma U = U_1 + U_2$

 $\Delta U = U_1 - U_2$

Diagonal cut:

$$k_x(x,y) = k_y(x,y) \equiv k = \text{const}$$

$$k = \frac{r}{1 - 2 \cdot s/l} \cdot \left(1 + 2 \cdot \frac{C_c}{C}\right)$$
$$\hat{U} = \frac{1}{2} \cdot \frac{l}{C \cdot v} \cdot \bar{I}$$

USR example:

 $N = 2 \times 10^7$, v = 0.006 c, I = 140 nA

l = 100 mm, C = 100 pF

ΣU = 75 μV

k = 100 mm, x = 0.5 mm

∆U = 375 nV *∆U* = 750 nV/mm

$$I(t) = \sum_{n=0}^{\infty} I_n \cos(2 \cdot \pi \cdot n \cdot f_{RF} \cdot t)$$

$$I(t) = \sum_{n=0}^{\infty} I_n \cos(2 \cdot \pi \cdot n \cdot f_{RF} \cdot t)$$

Uncooled beams:

$$I(t) = 2 \cdot \bar{I} \cdot \cos^2(\pi \cdot f_{RF} \cdot t)$$

$$I(t) = \sum_{n=0}^{\infty} I_n \cos(2 \cdot \pi \cdot n \cdot f_{RF} \cdot t)$$

Uncooled beams:

$$I(t) = 2 \cdot \bar{I} \cdot \cos^2(\pi \cdot f_{RF} \cdot t)$$

Ref.: M. Grieser et al., Acceleration, Deceleration and Bunching of Stored and Cooled Ion Beams at the TSR, Heidelberg, HIATO9, Venezia, Italy, 2009.

USR example:

 $E = 300 \text{ keV}, N = 2 \times 10^7, h = 10$

$$\Sigma U_{pk-pk} = ~150 \ \mu A$$
$$\Delta U_{pk-pk} = ~1.5 \ \mu A/mm$$
$$\Sigma U_{pk-pk} = ~750 \ \mu A$$
$$\Delta U_{pk-pk} = ~7.5 \ \mu A/mm$$

Noise Estimation

$$U_{noise} = \sqrt{\left(e_{th}^2 + |Z|^2 \cdot i_{amp}^2 + e_{amp}^2\right) \cdot \Delta f} \qquad \qquad Z = \left(R^{-1} + i\omega C\right)^{-1}$$

contribution

amplifier contribution

S/N

<i>U_{noise}</i> = 1 nV/√Hz	∆f	<i>∆U</i> @ 0.1 mm	<i>∆U</i> @ 0.5 mm	$\Sigma U_{uncooled}$	ΣU_{cooled}
Bunch structure	>20 MHz	0.02	0.09	33	170
Bunch by bunch	~2 MHz	0.06	0.3	100	530
Turn by turn	~200 kHz	0.2	0.9	330	1700

 $\Delta f \ll 200$ kHz: closed orbit measurements

Position Uncertainty

$$\sigma_x = \sqrt{\left(\frac{\delta x}{\delta U_1} \cdot U_{noise}\right)^2 + \left(\frac{\delta x}{\delta U_2} \cdot U_{noise}\right)^2}$$
$$\sigma_x = 2 \cdot k \cdot U_{noise} \cdot \frac{\sqrt{U_1^2 + U_2^2}}{(U_1 + U_2)^2}$$

Assumption: $U_{noise} \rightarrow$ dominant uncertainty contribution

Position Uncertainty

$$\sigma_x = \sqrt{\left(\frac{\delta x}{\delta U_1} \cdot U_{noise}\right)^2 + \left(\frac{\delta x}{\delta U_2} \cdot U_{noise}\right)^2}$$
$$\sigma_x = 2 \cdot k \cdot U_{noise} \cdot \frac{\sqrt{U_1^2 + U_2^2}}{(U_1 + U_2)^2}$$

$$\sigma_x(x=0) = \frac{k}{\sqrt{2}} \cdot \frac{U_{noise}}{U_{electrode}}$$

$$\hat{U} = \frac{1}{2} \cdot \frac{l}{C \cdot v} \cdot \bar{I} = \frac{1}{2} \cdot \frac{l}{L} \cdot \frac{N \cdot e}{C}$$

Position Uncertainty

$$\sigma_x = \sqrt{\left(\frac{\delta x}{\delta U_1} \cdot U_{noise}\right)^2 + \left(\frac{\delta x}{\delta U_2} \cdot U_{noise}\right)^2}$$

$$\sigma_x = 2 \cdot k \cdot U_{noise} \cdot \frac{\sqrt{U_1^2 + U_2^2}}{(U_1 + U_2)^2}$$

$$\sigma_x(x=0) = \frac{k}{\sqrt{2}} \cdot \frac{U_{noise}}{U_{electrode}}$$

$$\hat{U} = \frac{1}{2} \cdot \frac{l}{C \cdot v} \cdot \bar{I} = \frac{1}{2} \cdot \frac{l}{L} \cdot \frac{N \cdot e}{C}$$

Mechanical Tolerances

Misalignment

Quantization step size: $U_q = \frac{2 \cdot U_{adc}}{2^b - 1}$

Number of bits: b

Input range: ±U_{adc}

Quantization step size: $U_q = \frac{2 \cdot U_{adc}}{2^b - 1}$

Number of bits: b

Input range: $\pm U_{adc}$

Optimal amp gain:
$$G = \frac{U_{adc}}{U_{max}}$$
 $b > \log_2\left(\frac{2 \cdot U_{adc}}{U_{min} \cdot G} + 1\right)$

Example:

12 bit ADC, 200 MS/s, G = 200, ADC input range \pm 500 mV, 20 MHz bandwidth

Noise:

- thermal
- amplifier

Spectrum

Pick-Up Prototype

Pick-Up Prototype

Capacitance Simulations

Opera 3D, Tosca Electrostatic Solver

Capacitance insensitive to a small tilt of the separating ring.

Real C increased by the contribution of the connections and the amplifier.

Pick-Up Response Simulations

CST Particle Studio Wakefield Solver

 \sim 7×10⁶ mesh cells (already reduced by a factor of 2 by a symmetry plane)

Pick-Up Response Simulations

Voltage monitored at lumped components attached to the feedthroughs with C and R of the amplifier input

Pick-Up Response Simulations

Stretched Wire Test Stand

CH2

Stretched Wire Test Stand

Stretched Wire Test Stand

PU amps	NF SA-220F5	MSL, A. Paal	
Input impedance	1 MOhm 57 pF	5 MOhm 30 pF	
Input noise	0.5 nV/√Hz	0.9 nV/√Hz	
Voltage gain	46 dB	54 dB	

Digitizer	CS1642	
Channels	Ϋ	
Resolution	16 bit	
Sampling	200 MS/s	
Bandwidth	125 MHz	
Memory	128 MB	

Measurements vs. Simulations

Separating Ring

Improvement in sensitivity...

k => ~115% k

...but at the cost of the signal strength

U => ~80% U

Position Resolution

Low β Beams

 Theoretical calculations: difference below 0.5%-1% for low frequencies (RF harmonic numbers)

 Preliminary CST simulations: difference not bigger than a few percent (mesh size?), further studies needed

Prototype Status

- Diagonal cut => linear response
- Sensitivity: ~0.1 mm (depending on the bandwidth and gain), closed orbit measurements only (<1 kHz)
- Mechanical accuracy: <0.5 mm
- Tested only with a stretched wire and simulated for $\beta = 1$

Perspectives

- Systematic simulations for $\beta << 1$
- Sensitivity can be improved with a resonant circuit (one order of magnitude)

• Beam current measurements, etc.

Ref.: F. Laux, Entwicklung von kapazitiven Positions-, Strom- und Schottkysignal-Messsystemen für den kryogenen Speicherring CSR, PhD Thesis, University of Heidelberg, 2011.

Thank you for attention

