

8th DITANET Topical Workshop on Beam Position Monitors 16-18 January 2012Geneva, Switzerland

Beam Position Monitor for Low Energy Antiprotons at the USR

Janusz Harasimowicz

University of Liverpool Cockcroft Institute

FAIR @ GSI

<u>F</u>acility for <u>A</u>ntiproton and <u>I</u>on <u>R</u>esearch

Ultra-low Energy Storage Ring

- •Electrostatic ring
- • Antiprotons & protons/ions
- • Deceleration from 300 keV to 20 keV
- • Space charge limit: 2×10⁷ p @ 20 keV
- • Average currents: ~100 nA to ~1 µA

Beam Instrumentation

Capacitive Pick-Up

 $0₀$

 θ

 \leftarrow

 000

 \Box

 \circ

Problem Statement

- •Beam currents: ~100 nA - ~1 µA
- •Beam energies: 20 keV - 300 keV
- •Rev. frequencies: ~50 kHz - ~200 kHz
- •Both cooled and uncooled beams
- •Resolution: <0.5 mm
- •Accuracy: <0.5 mm

Diagonally Cut Pick-Up

 $x = k_x(x, y) \cdot \frac{\Delta U_x}{\Sigma U_x}$ $y = k_y(x, y) \cdot \frac{\Delta U_y}{\Sigma U_y}$

 $\Sigma U = U_1 + U_2$

 $\Delta U = U_1 - U_2$

Diagonal cut:

$$
k_x(x, y) = k_y(x, y) \equiv k = \text{const}
$$

Diagonally Cut Pick-Up

 $x = k_x(x, y) \cdot \frac{\Delta U_x}{\Sigma U_x}$ $\Sigma U = U_1 + U_2$ $y = k_y(x, y) \cdot \frac{\Delta U_y}{\Sigma U_y}$

 $\Delta U = U_1 - U_2$

Diagonal cut:

$$
k_x(x, y) = k_y(x, y) \equiv k = \text{const}
$$

$$
k = \frac{r}{1 - 2 \cdot s/l} \cdot (1 + 2 \cdot \frac{C_c}{C})
$$

$$
\hat{U} = \frac{1}{2} \cdot \frac{l}{C \cdot v} \cdot \bar{I}
$$

Diagonally Cut Pick-Up

 $x = k_x(x, y) \cdot \frac{\Delta U_x}{\Sigma U_x}$ $y = k_y(x, y) \cdot \frac{\Delta U_y}{\Sigma U_y}$

 $\Sigma U = U_1 + U_2$

 $\Delta U = U_1 - U_2$

Diagonal cut:

$$
k_x(x, y) = k_y(x, y) \equiv k = \text{const}
$$

$$
k = \frac{r}{1 - 2 \cdot s/l} \cdot (1 + 2 \cdot \frac{C_c}{C})
$$

$$
\hat{U} = \frac{1}{2} \cdot \frac{l}{C \cdot v} \cdot \bar{I}
$$

USR example:

 $N = 2 \times 10^7$, $V = 0.006$ $C, I = 140$ nA

 $l = 100$ mm, $C = 100$ pF

*Σ*U = 75 µV

 k = 100 mm, x = 0.5 mm

*∆*U = 375 nV*∆*U = 750 nV/mm

$$
I(t) = \sum_{n=0}^{\infty} I_n \cos(2 \cdot \pi \cdot n \cdot f_{RF} \cdot t)
$$

$$
I(t) = \sum_{n=0}^{\infty} I_n \cos(2 \cdot \pi \cdot n \cdot f_{RF} \cdot t)
$$

Uncooled beams:

$$
I(t) = 2 \cdot \bar{I} \cdot \cos^2(\pi \cdot f_{RF} \cdot t)
$$

$$
I(t) = \sum_{n=0}^{\infty} I_n \cos(2 \cdot \pi \cdot n \cdot f_{RF} \cdot t)
$$

Uncooled beams:

$$
I(t) = 2 \cdot \bar{I} \cdot \cos^2(\pi \cdot f_{RF} \cdot t)
$$

Ref.: M. Grieser et al., Acceleration, Deceleration and Bunching of Stored and Cooled Ion Beams at the TSR, Heidelberg, HIAT09, Venezia, Italy, 2009.

USR example:

 $E = 300$ keV, $N = 2 \times 10^7$, $h = 10$

ΣU_{pk-pk} = ~150 μA
ΔU_{pk-pk} = ~1.5 μA/mm *ΣU_{pk-pk}* = ~750 μA
ΔU_{pk-pk} = ~7.5 μA/mm

Noise Estimation

$$
U_{noise} = \sqrt{\left(e_{th}^2 + |Z|^2 \cdot i_{amp}^2 + e_{amp}^2\right) \cdot \Delta f} \qquad Z = \left(R^{-1} + i\omega C\right)^{-1}
$$
thermal

contribution

amplifiercontribution

S/N

$U_{noise} = 1 \text{ nV} / \sqrt{Hz}$	$\Delta \boldsymbol{\mathit{f}}$		ΔU @ 0.1 mm ΔU @ 0.5 mm \parallel	$\mathcal{Z} \mathcal{U}_{uncooled}$	$\mathsf{\Sigma} U_{cooled}$
Bunch structure >20 MHz		0.02	0.09	33	170
Bunch by bunch	\sim 2 MHz	0.06	0.3	100	530
Turn by turn	\sim 200 kHz	0.2	0.9	330	1700

*∆*f << 200 kHz: closed orbit measurements

Position Uncertainty

$$
\sigma_x = \sqrt{\left(\frac{\delta x}{\delta U_1} \cdot U_{noise}\right)^2 + \left(\frac{\delta x}{\delta U_2} \cdot U_{noise}\right)^2}
$$

$$
\sigma_x = 2 \cdot k \cdot U_{noise} \cdot \frac{\sqrt{U_1^2 + U_2^2}}{(U_1 + U_2)^2}
$$

Assumption: U_{noise} \rightarrow dominant uncertainty contribution

Position Uncertainty

$$
\sigma_x = \sqrt{\left(\frac{\delta x}{\delta U_1} \cdot U_{noise}\right)^2 + \left(\frac{\delta x}{\delta U_2} \cdot U_{noise}\right)^2}
$$

$$
\sigma_x = 2 \cdot k \cdot U_{noise} \cdot \frac{\sqrt{U_1^2 + U_2^2}}{(U_1 + U_2)^2}
$$

$$
\sigma_x(x=0) = \frac{k}{\sqrt{2}} \cdot \frac{U_{noise}}{U_{electrode}}
$$

$$
\hat{U} = \frac{1}{2} \cdot \frac{l}{C \cdot v} \cdot \bar{I} = \frac{1}{2} \cdot \frac{l}{L} \cdot \frac{N \cdot e}{C}
$$

Position Uncertainty

$$
\sigma_x = \sqrt{\left(\frac{\delta x}{\delta U_1} \cdot U_{noise}\right)^2 + \left(\frac{\delta x}{\delta U_2} \cdot U_{noise}\right)^2}
$$

$$
\sigma_x = 2 \cdot k \cdot U_{noise} \cdot \frac{\sqrt{U_1^2 + U_2^2}}{(U_1 + U_2)^2}
$$

$$
\sigma_x(x=0) = \frac{k}{\sqrt{2}} \cdot \frac{U_{noise}}{U_{electrode}}
$$

$$
\hat{U} = \frac{1}{2} \cdot \frac{l}{C \cdot v} \cdot \bar{I} = \frac{1}{2} \cdot \frac{l}{L} \cdot \frac{N \cdot e}{C}
$$

Mechanical Tolerances

Misalignment

 $x' = k \cdot \frac{\Delta U}{\Sigma U} \cdot \frac{1 + \frac{l}{d} \cdot \alpha}{1 - \frac{l}{d} \cdot \alpha}$

Rotation by a small angle α

Quantization step size: $U_q = \frac{2 \cdot U_{adc}}{2^b - 1}$

Number of bits: *b*

Input range: $\pm \mathcal{U}_{\mathit{adc}}$

Quantization step size: $U_q = \frac{2 \cdot U_{adc}}{2^b - 1}$

Number of bits: *b* Input range: $\pm \mathcal{U}_{\mathit{adc}}$

Optimal amp gain:
$$
G = \frac{U_{adc}}{U_{max}}
$$
 $b > \log_2 \left(\frac{2 \cdot U_{adc}}{U_{min} \cdot G} + 1 \right)$

Example:

12 bit ADC, 200 MS/s, G = 200, ADC input range ±500 mV,20 MHz bandwidth

Noise:

- thermal
- amplifier

-ADC

Spectrum

Pick-Up Prototype

Pick-Up Prototype

Capacitance Simulations

Opera 3D, ToscaElectrostatic Solver

Capacitance insensitive to a small tilt of the separating ring.

Real ${\cal C}$ increased by the contribution of the connections and the amplifier.

Pick-Up Response Simulations

CST Particle StudioWakefield Solver

~7×106 mesh cells (already reduced by a factor of 2 by a symmetry plane)

Pick-Up Response Simulations

Voltage monitored at lumped components attached to the feedthroughs with ${\cal C}$ and ${\cal R}$ of the amplifier input

Pick-Up Response Simulations

Stretched Wire Test Stand

WAR

 $CH₂$

Stretched Wire Test Stand

Stretched Wire Test Stand

Measurements vs. Simulations

Separating Ring

Improvement in sensitivity...

$k \Rightarrow 115\% k$

...but at the cost of the signal strength

 $U = > -80\%$ U

Position Resolution

Low *β* Beams

 \bullet Theoretical calculations: difference below 0.5%-1% for low frequencies (RF harmonic numbers)

 \bullet Preliminary CST simulations: difference not bigger than a few percent (mesh size?), further studies needed

Prototype Status

- \bullet Diagonal cut => linear response
- • Sensitivity: ~0.1 mm (depending on the bandwidth and gain), closed orbit measurements only (<1 kHz)
- •Mechanical accuracy: <0.5 mm
- • Tested only with a stretched wire and simulated for *β* = 1

Perspectives

- •Systematic simulations for *β* << 1
- • Sensitivity can be improved with a resonant circuit (one order of magnitude)

\bullet Beam current measurements, etc.

Ref.: F. Laux, Entwicklung von kapazitiven Positions-, Strom- und Schottkysignal-Messsystemen für den kryogenen Speicherring CSR, PhD Thesis, University of Heidelberg, 2011.

Thank you for attention

and and the company of the

