Accelerator Magnet R&D in the Perspective of a LHeC and a HE-LHC Synergy or Competition ?

Circles in a circle V. Kandinsky, 1923 Philadelphia Museum of Art

Outline

- A magnet view of LHeC and HE-LHC
 - -Scope
 - -Challenges
- The CERN magnet R&D programs
- Summary and perspective

LHeC scope

10

- "[...] a new electron-hadron collider, the *LHeC, in which electrons* [...] *collide with* LHC protons ". (A Large Hadron Electron Collider at CERN, DRAFT 1.0, LHeC-Note-2011-001 GEN)
- e-beam injected at 10 GeV, accelerated to 60 GeV (approximately ½ of LEP), up to possibly Photon Number Density at Z = 0 m 140 GeV s+s distribution at Q² = 1.9 GeV²
- A piece of art...

Main parameters

		е	р
Beam energy	GeV	60	7000
Total beam current	mA	100	860
Number of bunches		2808	2808
Particles/bunch	10 ¹⁰	2.0	17
Bunch spacing	ns	25	25

- A couple of hiccups:
 - 2 orders of magnitude difference in p/q – optics !
 - LHC is already in the tunnel, and takes lots of space integration !

LHeC magnet challenges

- A large number (4000 (RR) to 5000 (LR)) of precise, low-field, low-mass, low-cost magnets for the e⁻ accelerator
- Drive-thru and nested IR's, with space for traversing beams and appreciable synchrotron radiation heat loads
- No major challenges for injection and dump (technical solutions available). Note, however, the dump power in the LR option (50 MW)
- Integration in the existing complex
- Co-activity of installation with a running accelerator and its upgrade plans

Low field dipoles

Number of magnets	(-)	3080
Free aperture	(mm x mm)	90(H)x40(V)
Magnetic length	(mm)	5350
Injection field	(Gauss)	127
Flat-top field	(Gauss)	763
Good field region	(mm x mm)	±10(H)x6(V)
Field quality	(-)	±2·10 ⁻⁴
Injection field reproducibility	(Gauss)	±0.1

Compact and lightweight to fit in the existing tunnel, yet mechanically stable Field homogeneity in the

Field homogeneity in the whole range of operation ? Field reproducibility at injection ?

IR magnets

Other magnet challenges

- Limit cost, both capital and operating
 Super-ferric quadrupoles for the SC Linac ?
- The recirculating Linac has the size of the SPS
- Schedule and co-activity

LHC activities

HE-LHC Scope

- "[...] a 33 TeV centre-of-mass energy proton-proton accelerator in the LHC tunnel [...] and the need for new injectors, possibly with 1 TeV energy".
 (The High-Energy Large Hadron Collider, CERN-2011-003, also EuCARD-Conf-2011-001)
- Technicolor, Supersymmetry, Extra dimensions: "[...] the need to explore the high energy frontier will remain. We will always be able to make that case, today and tomorrow". (Elements of a Physics Case for a High-Energy LHC, J.D. Wells, pp. 1-5, CERN-2011-003, 2011)
- "A project on the scale and innovation level of the HE-LHC has a long preparation lead time". (CERN Accelerator Strategy, S. Myers, pp. 6, CERN-2011-003, 2011)

HE-LHC magnet challenges

- 27 km of very high field, accelerator grade magnets
 - 40 mm bore, 20 T dipoles
 - 40 mm bore, 500 T/m arc quadrupoles
 - 50 mm bore, 400 T/m IR quadrupoles
- 7 km of pulsed accelerator magnets with low loss
 100 mm bore, 5 T dipoles
- 5.6 km of transfer lines, from a SPS+ to HE-LHC
- Field swing and field quality
- Mechanics, protection, powering and stray field in the constrained LHC tunnel space
- Increased heat loads (e.g. a factor 20 on q_{Synchrotron})
- Cost and material availability
- Dismantle the LHC to make space for the new ring

HE-LHC injection and dump

Summary

LHC beam dump, injection system and other kickers

EuCARD HE-LHC'10 Accnet Workshop

B.Goddard, with input from L.Ducimetière, W.Bartmann, V.Mertens, J.Borburgh, M.Barnes, C.Bracco, V.Senaj, M.Meddahi, V.Kain, J.Uythoven

16.5 TeV dump system: does not look impossible in similar layout to present system

5 μ s kicker rise time feasible, x2.6 kicker length \rightarrow optics issues

Increase septa JB.dl (x1.9 septa length, maybe gain by using more of MSDC type), seems feasible (integration?)

Increase dilution sweep length: higher f_0 , needs more kickers OR SC dilution quadrupole plus kickers; integration issues

Upgrade dump block (longer, lower density), seems feasible

Upgrade protection devices for higher energy (longer, sacrificial elements), difficult

- 1-1.3 TeV injection system will need new layout
 - Longer kicker rise time $1.9 2.2 \,\mu$ s with longer pulse feasible, OR 1 μ s with 8 - 9 magnets and 40 m quad spacing: optics?
 - Double number of septa but 60 m between quads: optics?
 - Injection protection devices need more space

Cohabitation with experiments in injection regions??

Difficult, but not impossible

A number of R&D items have been identified but no activity at present

By courtesy of B. Goddard and V. Mertens

A really high field dipole

HTS/Nb₃Sn/Nb-Ti nested coil magnet

Low-loss pulsed magnets

4.5 T, Nb-Ti single layer design 6 T, Nb-Ti double layer design

Quench performance and operating margin (recall that the booster was a major stumble for SSC)

AC loss in the SC coil: 10 W/m over 7 km of magnets are 70 kW of required cryogenic power, or 20 MW socket power

By courtesy of P. Fabbricatore (INFN)

So, what are we doing about it ?

There are no problems, only solutions – John Lennon, 1980

Low Field Magnets

Interleaved ferromagnetic (1 mm) and plastic (2 mm) laminations Wide pole to spread-out magnetic flux and reduce the effect of magnetic property variation in the yoke Two turns only, air cooled bolted bars

REPRODUCIBILITY OF MAGNETIC FIELD OVER 8 CYCLES								
Model	High fields							
Maximum Relative Deviation from Average								
Model 1 (NiFe steel)	5.10-5	4·10 ⁻⁵						
Model 2 (Low carbon steel)	6·10 ⁻⁵	6·10 ⁻⁵						
Model 3 (Grain oriented 3.5% Si steel)	4.10-5	6.10-2						
Standard Deviation from Average								
Model 1 (NiFe steel)	3.10-5	3.10-5						
Model 2 (Low carbon steel)	4.10-5	5.10-5						
Model 3 (Grain oriented 3.5% Si steel)	2.10-5	4.10-5						

Excellent reproducibility achieved By courtesy of D. Tommasini

Large Aperture MQXC

Main Magnet Parameters							
Gradient	120 T/m						
Aperture	120 mm						
Working point	<80% SS						
Current	13'052 A						

Transparent quench heaters

Enhanced insulation

By courtesy of G. Kirby

Excellent first shot !

Harmonics of collared coils at warm

Coils larger than nominal in radius and at the poles by less than 0.1 mm

Random multipoles consistent with local errors in the range of $30...100 \,\mu m$

multipole order

7

8

9 10

0.1 mm

2

0.03 mm

By courtesy of G. Kirby, J.G. Perez, P. Galbraith, S. Russenschuck, E. Todesco

Cycled SC magnets

 Joint R&D (GSI/INFN/CERN) for the production of a collared coil of a 4.5 T, Nb-Ti, low-loss pulsed dipole

By courtesy of L. Oberli, P. Fabbricatore (INFN)

Nb₃Sn knocks at the door

By courtesy of J. Parrell (OST)

A Nb₃Sn cable for high field

14 strands, 1.25 mm Powder-in-Tube (PIT) SMC cable

Quench number

By courtesy of J. Perez and M. Bajko

HTS inserts

- EuCARD
 - 6 T insert built with YBCO tapes
 - Current density of 250 A/mm²
 - Race-track, 20 mm aperture (no bore) self-supported for test in FReSCa-2

|B| (T)

By courtesy of G. de Rijk

- EuCARD2 (proposed)
 - 5 T, 40 mm bore, accelerator quality HTS magnet
 - 10 kA-class HTS cable at 20 T

5 T cos-θ magnet design based on flat cable geometry

By courtesy of B. Auchmann

A (maybe) 20 T cable

- Roebel cables of punched HTS tapes after an idea of W. Goldacker (KIT)
- Manufacturing by IRL Ltd.
- First test at liquid helium (4.3 K) and in high field (10 T) show a current carrying capacity of 4 to 10 kA

By courtesy of J. Fleiter, Ph. Denis, G. Peiro, A. Ballarino

Summary table

			LHeC RR dipole prototype	CRISP and fast cycled SC magnets	MQXC R&D	EuCARD FReSCa-II	DS 11 T MB program	US-LARP IR quadrupole program	EuCARD HTS insert	EuCARD2 HTS model	activated SC magnets handling for	Comments
	eld ve ets	field quality and reproducibility	X									demonstrated
	w fi sisti agne	operating cost		x								tests planned in 2012
C	Lo' re: ma	integration in the LHC tunnel									Х	study launched in 2012 (LS1)
ē	ets	large aperture			Χ			X				results in 20122014
Ŧ,	agne Bgne	large gradient						X				
	вш	heat removal		X	X							results in 2012
	co-activitie	es and tunnel works									Х	integration study and models (BINP); schedule revision

2	
Ļ	
ய்	
I	

	15 T dipole outsert			X						deliverable Q1 2014
igh field jnets	5 T dipole insert						X	X		EuCARD2 proposal
	high gradient quadrupoles					X				US-LARP technology demonstration by 2014
ry h ma	magnet protection			X	X	X				
Ve	heat loads and removal		X	X						dedicated model tests
	field quality				X	X		X		
ets	quench performance and margin	X								
Pulse SC magn	low-loss cables	x								
Transfer I	ines									options reviewed at HE-LHC workshop in Malta, 2010
Material a	availability and cost			X	X	X	X	X		
Installatio	n in 2030								X	study launched in 2012 (LS1)

Conclusions

- Many of the critical issues in the long-term programs LHeC and HE-LHC are addressed by synergic medium term activities for which we have commitments, major milestones and proposals (SLHC-PP, EuCARD, US-LARP, HL-LHC, EuCARD2)...
- ... however, given the present landscape (LS1 and beyond), there is not much more that we can realistically do on magnets

Never mind, the glass is half full !

Acknowledgements

- Obviously, the whole Magnet Group (TE-MSC)
- EuCARD partners

• US-LARP partners

EUCARD

- And among the other collaborators

 Insitutions: INFN, GSI, University of Geneva
 - Industries: Bruker EAS and HTS, OST, IRL

Additional material

LHeC IR quad R&D work ?

- Half-quad with fieldfree region, assembled using MQXC coils
 - 2.5 FTE
 - 500 kCHF
 - approx. 2 years till test

LHeC options: RR and LR

HE-LHC – (33 TeV cms)

Cables for HFM Program

SMC Dipole cable – 14 strands (1.25 mm) and 18 Strands (1 mm) Width = 10 mm, Twist Pitch = 60 mm Average I_c degradation 0 ... 4 %

Fresca 2 Dipole cable – 40 Strands (1 mm) Width = 20.9 mm, Twist Pitch = 120 ... 140 mm Average I_C degradation < 15 %

DS Dipole cable – 40 Strands (0.7 mm) Width = 14.7 ... 15.1 mm, Twist Pitch = 100 mm, 0.8° keystone Average I_C degradation < 3 %

Nb₃Sn Small Model Coil: SMC-3

14 strands, 1.25 mm PIT

Winding

Instrumentation

Ready for assembly

Reacted

Instrumented

Impregnation

FRESCA2

- Goal
 - 13 T in 100 mm bore for cable test facility
- Status
 - Mechanical and magnetic analysis completed
 - Order for the support structure placed
 - Delivery expected by May 2012
 - Assembly with dummy al coils in June-July
 - Procurement of winding tooling ongoing
 - First coil to be fabricated by the end of 2012
 - Conceptual design of the cryostat finished

FRESCA2

RMC Racetrack Model Coil

Goal

- Test FRESCA2 cable and coil fabrication process in subscale model
- Status
 - Preliminary 2D/3D magnetic and mechanical analysis completed
 - Design of coil components and tooling close to completion
 - Design of structure component underway
 - Start of coil fabrication and structure assembly in summer 20120

RMC Racetrack Model Coil

Courtesy M. Timmins and J. Humbert

DS Upgrade: collimators & 11 T dipoles

Abstract

• Beyond HL-LHC, CERN has a number of physics options that offer potential and challenges. This contribution dwells on the long-term projects LHeC and HE-LHC to put the magnet R&D at CERN (resistive and superconducting, slow and fast) in a long term perspective. In particular synergies and parallel roadmaps will be highlighted. We will show how the on-going development (2012-2015) on low-field, high-field, and low-loss magnets can be used towards longer term objective.