

Session 7 – After LS1 Will we still see SEEs?

M. Calviani (EN/STI) for the R2E Mitigation Project

Thanks to the R2E Project team and RadWG members!

Introduction

R2E Project mandate:

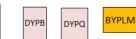
- SEEs should allow LHC operation with MTBF ≥ I week for a peak luminosity of 2*10³⁴ cm⁻²s⁻¹ and an yearly integrated luminosity of ~50 fb⁻¹
- HL-LHC performances in mind (~5*10³⁴ cm⁻²s⁻¹ for a yearly integrated luminosity of ~200 fb⁻¹)
- Mitigation activities foreseen to reduce risk of radiation-induced failures:
 - Equipment relocation
 - Shielding
 - Hardware development

ONGOING process with major actions during and after LSI

M. Calviani - Will we still see SEEs? (after LSI)

YES, we will still see SEEs in the machine after LSI!!

- Why?
 - Certain equipment will remain in tunnel/exposed areas
- Mitigation!
 - Shielding/relocation
 See A.-L. Perrot S05
 - Hardware developments
- How many?
 - We cannot give a reliable figure as of now (see later...)
 - Final goal to have $MTBF \ge I$ week due to SEEs in post-LSI years



What will remain critical after LS1?

- No relocation/shielding is possible for several systems
 - Only rad-tol hardware modification or new developments
- Tunnel equipment
 - QPS protection (nQPS splice protection)
 MBA14 MBB14 MBC14
 - LHC60A PC

CRYO

DYPB	QY	RPL	
00	CBB	Α	

MQ14

Beam instrumentation

RRs

- QPS DQQDI/DG
- LHC120A, LHC600A, LHC4-6-8kA PC

DYPB

... how many?

- Difficult to quantify/predict precisely the number of events as they depends on:
 - A. Evolution of radiation levels in critical areas
 - B. Radiation tolerance of new hardware developments
 - C. Appearance of additional failure modes
- How to improve prediction capability?
 - Follow-up 2012 operation (higher luminosity/intensity)
 - Radiation-testing campaigns
 - Testing at mixed-field facilities LHC-type spectra
 - Test teams need to be properly manned
 - Improve radiation monitoring in LHC

M. Calviani - Will we still see SEEs? (after LSI)

9th February 2012

Radiation level evolution

- Failure rates are proportional to the radiation levels
- Radiation levels for critical areas for which mitigation actions have been already foreseen

	Areas	e e	y Hadron Fluen >LS1 (nominal)	
Critical	UJ14/16	2.10E+08	6.30E+08	2.50E+09
	RR13/17	7.00E+06	2.10E+08	8.40E+08
	UJ56	3.50E+07	5.30E+08	2.10E+09
	RR53/57	1.10E+07	3.30E+08	1.30E+09
	UJ76	5.40E+06	8.10E+07	3.20E+08
	RR73/77	8.10E+06	2.40E+08	9.70E+08
	UX85b	1.70E+08	4.30E+08	4.30E+09
	US85	3.50E+07	8.80E+07	8.80E+08

- Shielding (2011/12) + full relocation (LST)
- Shielding (LSI) + PC R&D (≥LSI)
- Full relocation (LSI)
- Relocation (LSI)
- ▶ PC R&D (**≥LSI**)
- Shielding and relocation (LSI)

Radiation level evolution

Tunnel areas – no shielding/relocation possible

	Areas	High-Energy Hadron Fluence (/year) 2011 >LS1 (nominal) Ultimate		
	DS (P1/5)	1.00E+10	1.50E+11	6.00E+11
Tunnel	DS (3/7)	1.00E+09	1.50E+10	6.00E+10
Tur	DS (other)	3.00E+08	1.40E+10	1.80E+10
	ARC	2.00E+08	9.00E+09	1.20E+10

	Areas	High-Energy Hadron Fluence (/year)		
	Areas	2011 >LS1 (nominal) Ultimate		
	UA23 (maze)	3.40E+06	2.00E+07	2.90E+07
σ	UA87 (maze)	1.00E+06	6.00E+06	8.40E+06
ate	UJ23	2.00E+05	9.00E+05	1.20E+06
stig	UJ87	5.00E+05	2.30E+06	3.00E+06
Investigated	UX45	2.50E+06	1.50E+07	2.10E+07
-	UX65	1.00E+06	6.00E+06	8.40E+06
	REs (entry!)	5.00E+05	2.30E+07	3.00E+07

- Dominated by leakage (luminosity or collimation)
- Beam-gas dominated

- Large uncertainty due to
 25ns operation vac pressure
- Large number of exposed equipment → potentially more failures
- Beam-gas pressure (25ns operation)
 - PLCs most sensitive equipment

Power converters post-LS1

- Almost ~1700 equipment underground
 - UJ14/16, RR (P1/5/7), UJ/UA (P2/4/6/8) + tunnel
- Failure types (2011):
 - Auxiliary power supplies
 - Voltage source
 - Filter corruption on FGC ADCs
- Mitigation actions:
 - Digital filter improvem
 - Shielding UJ14/16 \rightarrow 2
 - Redesign and relocatio
 - SCL (>LSI)

R2E-EPC project

- FGC replacement by FGClite
 - Main weakness is Xilinx 95000 CPLDs
 - Present in all PCs!
 - ~1050 devices, developed/tested towards installation end of LSI
- Patch solutions to be developed/applied on the AC-DC PSUs of LHC600A PCs
- Redesign and upgrade (RR equipment)
 - ► LHC600A & LHC4-6-8kA \rightarrow complete redesign
 - ► LHCI20A → FGClite development is crucial for the R2E Project to guarantee the MTBF ≥ I week

converter

LHC60A-8V

LHC120A-10V

LHC600A-10V

LHC4-6-8kA-8V

Power converters failures post-LS1

>LS1

60..200

10..30

1...15

1..45

Failures on 60A not necessarily lead to beam dump!

► 2012:

- Shielding improvemer
- Digital filter improver

Post-LSI:

- Assumes EPC solved
- Reduction of failure r LSI years (not include)

Uncertainties:

failure per year

2011

4

1

7

1

Rad-failure cross-sections!

2012

10..30

2...3

7..10

1..3

- Radiation levels in the ARC
- → FGClite critical for R2E
 → PC patches for AC-DC
 → Radiation testing before installation required

- I. SCL technology fully available by LS2
- II. PC R&D needs to progress anyway for post-LS2
- Final solution (HL-LHC) might be an hybrid:
 - Horizontal SCLs in LS2 for P7 RR PCs
 - Radiation tolerant PC for other RRs in LS2
 - Vertical SC links in LS2/3?
- Review during 2012/13

QPS upgrades

- Radiation-induced faults are responsible for most of the QPS trigger in stable beam during 2011
 A. Macpherson S01 B. Denz - S06
- QPS equipment located in tunnel and critical areas
- Mitigation actions (LSI):
 - Relocation of equipment (IPQ/IPD/IT and 600A) in UJ14/16
 - Patches and hardware upgrades (new boards)
 - Failure estimation post-LSI not possible at the moment; likely good perspectives though (rad-tol developments)
 - Radiation/functional testing needed

Other equipment in critical areas

EN/EL (UPS)

- Relocation from UJ56 (2011/2012) and US85 (LSI)
- Radiation-sensitivity tests during 2012 at H4IRRAD
- UPS will stay in the REs ARC beam-gas

CRYO (tunnel + shielded areas)

- All known issues to be mitigated (hardware dev./relocation) during LSI
- Follow-up needed on Siemens PLCs on compressors (rad-test
 - at No EN/EL or CRYO SEE-induced dumps expected after LSI if all mitigation will be successful
 - Follow-up still needed

See M. Brugger – S03, L. Tavian – S05

Conclusions 1/3

- We cannot be more precise on the number of failures expected in post-LSI years
 - Large uncertainty on radiation-induced failure cross-section
 - For existing equipment
 - And for new hardware developments
 - Uncertainties on radiation levels
 - Vacuum pressure in the DS/ARC @25ns
 - Betatron/momentum collimation losses (total and sharing P3/7)
- Implementation of on-fly patches by equipment groups!

- We know what are the critical equipment and issues to address to minimize SEE-induced dumps!
- Hardware developments:
 - R2E-EPC power converter R&D program
 - FGClite development
 - QPS hardware modifications
 - Radiation testing campaigns before LHC installation!
- Radiation levels:
 - Scrubbing run 2012 to understand 25ns vac. ARC/DS rad. levels
 - Tight collimation settings: radiation loading of RRs
- SCLs:
 - Development of horizontal/vertical SCLs + integration

Conclusions 3/3

SEE are still expected to be present after LSI

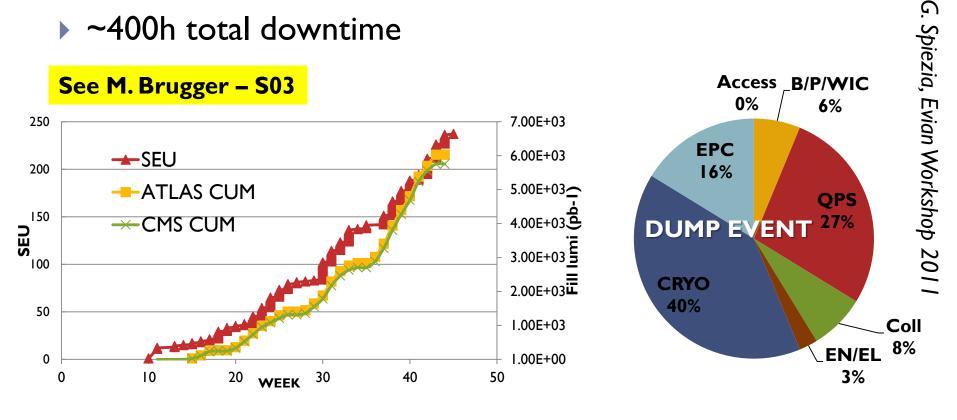
- However:
 - Mitigation actions (developments/relocation/shielding) will allow to decrease their impact despite higher LHC performances
- Radiation level monitoring requires continuing effort
 - 2nd generation RadMons + BLM team support (!)
- R&D on rad-tol PC critical perhaps joint with SCLs
- QPS developments in the tunnel critical for operation
- UX45/65 mitigation (other than PLCs) not in R2E baseline

MTBF \geq I week feasible (with continued efforts)

Thanks a lot for your attention!

M. Calviani - Will we still see SEEs? (after LSI)

9th February 2012



Summary of 2011 observations

- 70 dumps events induced by SEEs on LHC machine equipment
- ~400h total downtime

