Experiments Expectations, Plans and Constraints

- □ Physics goals for 2012
 - p-p and Heavy Ions
- Views about p-p beam parameters
- □ Special runs
- □ Schedule

Change in personnel

Please be kind to us... we may need sometime to be as effective as "Bob le Builder"

Experiments Expectations, Plans and Constraints

- □ Physics goals for 2012
 - p-p and Heavy Ions
- Views about p-p beam parameters
- □ Special runs
- □ Schedule

Target luminosity for p-p runs

- Minimal result for 2012:
 either discovery of Higgs or exclusion at 95% CL down to 115 GeV
 - If discovery, study properties, look for SUSY partners
- □ 5 σ per experiment down to 115 GeV at \sqrt{s} =8TeV requires > 15 fb⁻¹
 - Difficult to tell precisely as we are at the edge of experimental sensitivity

- Ideal target is ~20 fb⁻¹ for p-p operations before LS1
 - To accommodate possible inefficiencies due to high pileup

Overview of p-p physics program

- The Higgs discovery is just the tip of the iceberg
 - Essential physics program beyond that
- SUSY
 - Important search regions are accessible with 2 to 4 times greater sensitivity at 8 TeV versus 7 TeV.
- Flavor physics
 - $B_S \rightarrow \mu^+ \mu^-$: strongly suppressed in S.M. (BR=3e-9)
 - CP violation
 - ~1.5 fb⁻¹ is the clear target for LHCb
- □ Exotics (e.g. W', Z')
- Forward physics
 - Elastic interactions at small t
 - Diffractive scattering

Guidelines for p-p program optimization

- Clear goal: maximize integrated luminosity useful for physics
- Trivial statement with non-trivial implications:
 - Peak luminosity is not the final goal and should not be maximized at the cost of smaller integrated luminosity
 - Any theoretical improvement in peak luminosity should be weighted against the cost in commissioning time and lower beam availability
 - Luminosity is only useful to the extent that it can be used by the experiments
 - E.g. higher pile-up causes loss of efficiency, both at the trigger and reconstruction/analysis level, partially counterbalancing the increased delivered luminosity

Experiments Expectations, Plans and Constraints

- □ Physics goals for 2012
 - p-p and Heavy Ions
- Views about p-p beam parameters
- Special runs
- □ Schedule

Beam Energy

- Experiments support increasing energy to 8 TeV provided that there are no additional risks nor delays
 - ~14% more luminosity
 - ~20% less data needed for the same Higgs discovery significance
 - ~10% higher mass reach for exotics
 - Extended SUSY reach with 2 to 4 times greater sensitivity

- The recommendation is also to start right away at the highest reachable energy
 - The only way to secure maximum integrated luminosity

Squeeze and bunch length

\Box Define β^* values with following criteria:

- ATLAS and CMS:
 - Smallest possible
- LHCb
 - Minimum compatible with the inclined crossing (more later)
 - Allowing a factor 2 range for leveling (keep stable luminosity over long fills)

– Alice:

- Squeeze to a sufficient extent to allow satellite-main filling scheme with natural satellites (3m?)
- A possible approach: bring all experiments to 3m after ramp and squeeze, then squeeze further for the high luminosity ones

Bunch length

- Increasing bunch length by up to ~10% would be acceptable
 - Recommendation: fix the ideal length before the start of physics and keep it stable

Bunch separation

- It seems clear filling schemes with 50 ns bunch separation provide significantly larger integrated luminosity than schemes with 25 ns
 - Actual estimates differ, but our working hypothesis is that the difference would be between 30 and 50%
 - Lower peak luminosity, extra scrubbing, maybe different squeeze...
- Under these assumptions we support 50 ns separation as a default scenario for this year
 - This implies a peak average pileup around 30
- □ No real show-stopper expected up to peak pileup of 30 (see later slides) but:
 - Detailed analyses still ongoing: if hard limits are identified, will need to investigate ways to cap the pile-up (lower bunch charge, lumi-leveling), even at the expense of some luminosity
 - It is important to underline that for the longer term 25 ns remains the preferred scenario
 - Make sure to plan sufficient MDs to establish 25 ns feasibility

High-pileup events

□ Z→µµ candidate with20 reconstructed vertices

Event with 40 reconstructed vertices

Effects of pileup on experiments

- Some that probably can be mitigated
 - Worse vertex reconstruction efficiency, offset in energy, higher rates of low-pt jets
 - if mitigation implies raising thresholds there will be anyway an impact on physics
- ... and some that cannot
 - Degradation of energy resolution, need for more disk/CPU resources
- A couple of examples:
 - Vertex multiplicity should scale linearly with μ if reconstruction efficiency is constant
 - We observe deviation after µ~20
 - Shower shapes perturbation affect electrons and photon identification efficiencies
 - But remember that there are 2 photons in H→γγ
 - Algorithms are still not optimized for high pile-up: improvements are expected
- With this year's μ we expect nevertheless to gain overall with the higher L

Collisions for ALICE in p-p

- □ There is an agreement to provide luminosity to ALICE by colliding main bunches with satellites as successfully tested at end of 2011
 - More colliding bunches for other experiments
 - In the assumption of running with 50ns bunch separation
- □ Tests in 2011 have indicated that natural satellites provide ~3 times lower luminosity than required by ALICE
- □ Two alternatives:
 - Enhanced satellites: tested but still manual procedure
 - More squeeze in IP2
- □ The squeeze-based approach is the preferred one
 - Population in satellites is kept to a minimum → ideal for other experiments

Crossing angle in LHCb

- Polarity reversals would ideally take place every ~100/pb to minimize systematics
- In 2011, internal and external crossing angles were both in the horizontal plane
 - Very different total crossing angles for the two polarities (~1040 µrad vs ~40 µrad the latter is very small and presents problems)
- Move the external crossing angle to the vertical plane:
 - Absolute value of effective crossing angle independent of dipole polarity
- Need to maintain horizontal crossing angle at injection; two options:
 - Rotate after reaching β*=3m at all IPs but before the final squeeze of ATLAS and CMS
 - Rotate after reaching final β^* and establishing collisions for the other experiments
- Optimal procedure and effects on setup time and efficiency have still to be assessed
 - May have an influence on the number and timing of polarity changes
- Essential to establish final procedure during commissioning and use it from the start of p-p running

Other points for discussion

- Consider streamlining the start of fill procedure to declare stable beams as soon as collisions are established
 - ... before optimizations for the experiments are performed
 - Potential gain in integrated luminosity
- Eliminate need for human confirmation for the LHCb leveling steps
 - The automatic procedure has been extensively tested
- Complete implementation of procedure for lumi-leveling of ATLAS and CMS in case it is necessary

Experiments Expectations, Plans and Constraints

- □ Physics goals for 2012
 - p-p and Heavy lons
- Views about p-p beam parameters
- □ Special runs
- □ Schedule

Heavy ions physics program

- Types of beams
 - The default plan for 2012 is to take data with p-Pb collisions only
 - ALICE requests both p-Pb and Pb-p beam setups
 - Still unclear if ALICE will also need polarity reversals for both setups
 - Additional requests for data taking with p-p at different C.M. energies are also being considered
- Energy of p-Pb
 - Most likely the request will be to run at equivalent proton energy of 3.5 TeV but 4 TeV is still being considered
 - Same Pb energy as Pb-Pb run with no serious luminosity loss
- Beam optics
 - Target is smallest β* (0.6m?) for ALICE, ATLAS and CMS
 - Is this feasible?
- □ LHCb will also join the run for the p-Pb part
 - We assume no squeeze beyond 3m will be possible
 - We need to investigate a suitable filling scheme

Heavy Ions Physics goal

- Double physics goal:
 - Baseline measurements for the nucleus–nucleus program
 - QCD studies: e.g. parton saturation at low x
- □ The final goal of the p-Pb physics program is ~100 nb⁻¹
 - See: "Proton-nucleus collisions at the LHC: scientific opportunities and requirements 2012",
 J. Phys. G: Nucl. Part. Phys. 39
- □ Luminosity target for 2012
 - 100 nb⁻¹ sounds "a bit" too much for this year... given an expected luminosity of ~3x10²⁸ cm⁻²s⁻¹
 - 30 nb⁻¹ is the realistic target
 - Is it worth exploring the option of operating with fatter p bunches to achieve higher luminosity?

Experiments Expectations, Plans and Constraints

- □ Physics goals for 2012
 - p-p and Heavy Ions
- Views about p-p beam parameters
- Special runs
- Schedule

Special runs for 2012

- Keep them to the essential, given emphasis on luminosity production
- □ Two higher priority tasks
 - Luminosity calibration
 - Essential as we go to different beam energy
 - High beta physics
- Other options would be considered if possible
 - Very high and/or low pileup runs
 - Some stable beams at 25 ns
- General guidelines:
 - Concentrate special runs towards the second part of the year
 - After ICHEP deadline
 - Reduce total time allocated to somewhat less than last year's

Luminosity calibration

- \Box At least one VdM scan with $\beta^*=11m$ to reach ultimate precision
 - Perform the scan at sufficiently low mu (~1-2), so as not to confuse VdM calibration with mu-dependent corrections
 - Keep transverse luminous size larger than vertex resolution, to investigate correlations between horizontal and vertical beam transverse profiles
- Still discussing whether to schedule it early or after ICHEP
- If the precision scan goes later we could ask for one at nominal β* during the intensity ramp-up
- CMS is interested in few "mini-scans" at end of fill to set reference points

Please note that Lumi Days 2012 event is scheduled from 29 February 2012 to 01 March 2012 https://indico.cern.ch/conferenceDisplay.py?confld=162948

High beta

- □ Two physics goals
 - Diffractive physics at β*=90m (mainly TOTEM)
 - Highest β* to approach Coulomb interference region for elastic scattering
- Only one of physics run can be supported within the present schedule
 - Tentative proposal is to go for a mixed setup with 90m in IP5 and 500m in IP1
- Roman pots would profit from running in low-beta low-intensity p-p runs after technical stops for calibration
 - Need to get to ~6 mm
 - What can be done without re-doing a beam based alignment but including the pots in loss maps?
- ALFA confirmed that no damage is caused by pots warming up during high luminosity runs
 - ALFA will stay in for the complete p-p run

Miscellanea

- Early beam splashes are requested by most experiments
 - Details to be finalized
- Luminosity leveling tests
 - Can be carried out at an early stage during intensity ramp with the goal of assessing effect on luminosity lifetime
 - For both ATLAS and CMS
 - Establish complete procedure later if needed
- □ Low pileup sample
 - ATLAS needs to collect ~10M events at very low PU (<0.01)
 - <10h of data taking should be sufficient</p>
 - Such low value should be reachable with large separation (close to 3 σ for both beams if possible) at nominal bunch population
 - We propose to use part of the early fills in the luminosity ramp-up
 - No special run necessary

Experiments Expectations, Plans and Constraints

- □ Physics goals for 2012
 - p-p and Heavy Ions
- Views about p-p beam parameters
- □ Special runs
- Schedule

Few remarks on the schedule

- Several optimization already applied + repair of non-conformity in IP5
 - − ⇒ Mike's new schedule
- □ 155 days of physics
 - Including special runs
- □ $6x10^{33}$ cm⁻²s⁻¹ x 145 days x H ≈ **15 fb⁻¹** (H = Hubner factor ~ 0.2)
- □ Reaching 20 fb⁻¹ is tough!
 - Plan for fastest possible intensity ramp-up!
 - Then keep stable conditions to max machine availability
- □ Aim to get 5 fb⁻¹ for ICHEP
 - By first week of June

Conclusions

- □ 2012 will be a crucial year for experiments!
- □ The experiments support running in p-p at 8 TeV and 50 ns bunch separation to maximize the physics reach before LS1
 - No hard limitation from pileup is expected for this year but there may be some loss in efficiency
- The main goal for the Heavy Ion program will be to run with p-Pb
- Collecting the required integrated luminosity for all physics goals will be very challenging but we are confident that you will manage to surprise us again
- The program of special runs will be kept to the essential

THANK YOU all for an exceptional 2011!!

... looking forward for an even "brighter" 2012

BACKUP

A quick look at the past

Goals for 2011

Proton running Integrated Luminosity (pb-1) Goal for 2011 was already set a year ago: 1 fb⁻¹ delivered to each of IP1, IP5 and IP8 at 3.5 TeV (or >3.5TeV) Gimme five ... fb⁻¹? Can probably do better for IP1 and IP5 **You** can make the SM Higgs visible or ... history But it will actually be a challenge to deliver 1fb⁻¹ to IP8 consider maximum luminosity and pile-up tolerable to LHCb XAlready a big effort from LHCb side to "help" reaching the target: L_{max} : from 2e32 to 3e32 and μ_{max} : from 0.5 to 2.5 One fb⁻¹ will be just reachable if we make proper choices \sim with lumi leveling (no decay): 3e32 * 110 days * 0.35 = 1 fb⁻¹ fraction in stable beams 3rd LHC Performance Workshop / Session 7 27-January-2011 Chamonix Massimiliano Ferro-Luzzi

Tracking and vertex reconstruction

- Average vertex multiplicity should scale linearly with µ if reconstruction efficiency is constant
 - We observe instead deviation after μ~20
 - Due to vertex merging and decreased tracking efficiency
- Beware that algorithms are not optimized for high pile-up
 - Improvements are expected

Energy resolution

- Pileup events deposit extra energy, giving offset in reconstructed object energies
 - Average offset can be corrected
- □ The higher fluctuations result also in a smearing of the resolution
 - E.g. missing transverse energy resolution scales with the square root of the total transverse energy that scales itself with pile-up

Electron/photon reconstruction efficiency

- Electrons and photon identification efficiency depends on shower shapes in calorimeter
 - We hope to recover some of the performance by optimizing shower shape cuts for high pile-up
 - But remember that there are 2 photons in H→γγ

Jet multiplicity

- Multiplicity of low-p_T jets increases non-linearly with pile-up
 - Can be mitigated by pile-up subtraction
- Hard to maintain trigger acceptance for multiple low-pT objects
 - Raising thresholds affects physics reach

Other effects

- Event sizes and detector occupancies grow
 - Higher data throughput, hence load on DAQ
 - More disk resources needed
- Reconstruction complexity/time will naively scale with the number of tracks
 - Increased trigger CPU needs
 - Need to adapt algorithms and cuts
 - Increased offline CPU needs
 - E.g. CMS will need HLT farm extension to run @50ns resulting in μ =32
 - Baseline option being evaluated: increase of CPU by 50%
 - Similar figures are expected for ATLAS

Vacuum situation

□ ALICE

- Need vacuum pressure left and right of IP2 to remain below 5x10⁻⁹
 mbar (with current bunch intensities) to be able to switch on the TPC with proton beams
 - Hopefully the intervention on bad fingers contact will help

□ CMS

- Data taking suffers from bad vacuum conditions at 18.3 m right of CMS
 - Vacuum conditions almost systematically start degrading at injection
 - Vacuum degrades in spikes
 - Often the situation recovers before stable beams
- Efficiency drops significantly when vacuum exceeds 10⁻⁸ mbar
- Needs to be understood before data taking in 2012
 - Beware that no local intervention is possible during Christmas shutdown

ATLAS and LHCb

For the moment the level of background seems under control

CMS vacuum issues – a typical bad fill

