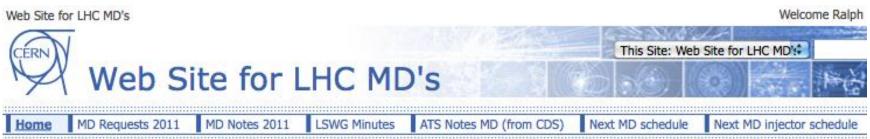


MD Plans in 2012

The LHC MD coordination team R. Aβmann, Frank Zimmermann, Giulia Papotti


LHC Performance Workshop, Chamonix, 7.2.2012

http://www.cern.ch/lhc-md

LHC-MD web site holds detailed info, ATS MD notes by the teams, MD requests, LSWG minutes and presentations, ...

Here I will be generic, focusing on issues relevant for this meeting!

7/2/2012

Achievements → 2011 MD Notes

BI MD studies on August 25th 2011, D. Belohrad et al, CERN-ATS-Note-2011-130 MD

End-of-fill study on collimator tight settings, R. Assmann et al, CERN-ATS-Note-2011-125 MD

Optics measurement and correction close to the half integer resonance, R. Calaga et al, CERN-ATS-Note-2011-124 MD. - 2011.

Results of long range beam-beam studies and observations during operation in the LHC, Alemany et al, CERN-ATS-Note-2011- 120 MD

IR1 and IR5 aperture at 3.5 TeV, C. Alabau Pons, CERN-ATS-Note-2011-110 MD

Beam parameters observations during a high pile-up collisions fill, G. Trad et al, CERN-ATS-Note-2011-105 MD

Longitudinal Oscillations with Batch Injection in the LHC, T. Argyropoulos et al, CERN-ATS-Note-2011-031 MD

Dependence of single beam lifetime on bunch length, P. Baudrenghien et al, CERN-ATS-Note-2011-083 MD

Tight collimator settings with beta* = 1.0 m, R. Assmann et al, CERN-ATS-Note-2011-079 MD.

R2E-related MD: slow controlled losses for RadMon/BLM cross-checks, M. Calviani et al, CERN-ATS-Note-2011-070 MD

BI MD Studies on June 29th 2011, D, Belohrad et al. CERN-ATS-Note-2011-069 MD

Quench Margin at Injection, W. Bartmann et al, CERN-ATS-Note-2011-067 MD

MKI UFOs at Injection, T. Baer et al, CERN-ATS-Note-2011-065 MD

MD on Injection Quality - Longitudinal and Transverse Parameters , L. Drosdal et al, CERN-ATS-Note-2011-063 MD

Improving LHC Collimator Setup Efficiency at 3.5 TeV, Assmann et al, CERN-ATS-Note-2011-062 MD

IR3 combined cleaning test at 3.5 TeV, R. Assmann et al, CERN-ATS-Note-2011-061 MD.

LHC Transvers Profile Monitors studies (MD on May 6th, 2011), E. Bravin et al, CERN-ATS-Note-2011-049 MD

Transverse coupled-bunch instability rise times in the LHC at injection and top energy, N. Mounet et al, CERN-ATS-Note-2011- 035 MD

Head-on beam-beam tune shifts with high brightness beams in the LHC, R. Alemany et al, CERN-ATS-Note-2011-029 MD Test of luminosity levelling with separated collisions, R. Alemany et al, CERN-ATS-Note-2011-028 MD

50 and 75 ns operation in the LHC: Vacuum and Cryogenics observations, G. Arduini et al, CERN-ATS-Note-2011-046 MD

BPM Offset Determination by Sinusoidal Quadrupole K-modulation, T. Baer et al, CERN-ATS-Note-2011-043 MD

The Achromatic Telescopic Squeezing (ATS) MD part I, S. Fartoukh et al, CERN-ATS-Note-2011-033 MD

Summary of MD on nominal collimator settings, R. Assmann et al, CERN-ATS-Note-2011-036 MD

Un-squeeze to 90 m, H. Burkhardt et al, CERN-ATS-Note-2011-032 MD

Collimator losses in the DS of IR7 and quench test at 3.5 TeV, R. Assmann et al, CERN-ATS-Note-2011-042 MD

Studies of longitudinal single bunch stability, T. Argyropoulos et al, CERN-ATS-Note-2011-041 MD

TI8 shielding studies and angular alignment of TDI and TCDQ, W. Bartmann et al, CERN-ATS-Note-2011-040 MD

Achievements → 2011 MD Notes

BI MD studies on August 25th 2011, D. Belohrad et al, CERN-ATS-Note-2011-130 MD

End-of-fill study on collimator tight settings, R. Assmann et al, CERN-ATS-Note-2011-125 MD

Optics measurement and correction close to the half integer resonance, R. Calaga et al, CERN-ATS-Note-2011-124 MD. -2011.

Results of long range beam-beam studies and observations during operation in the LHC, Alemany et al, CERN-ATS-Note-2011-120 MD

UD

IR1 and IR5 aperture at 3.5 TeV, C. Alabau Pons, CERN-ATS-Note-2011-110 MD

Beam parameters observations during a high pile-up collisions fill, G. Trad et al, CERN-ATS

Longitudinal Oscillations with Batch Injection in the LHC, T. Argyropoulos et al

Dependence of single beam lifetime on bunch length, P. Baud Tight collimator settings with beta* = 1.0 m P

R2E-related MD: slow controll

Acknowledgements to the many, many colleagues who proposed the MD's, performed them and analyzed results! BI MD Studio Quend MKI UI

MD on -ATS-Note-2011-063 MD Improvii

IR3 com

on May 6th, 2011), E. Bravin et al, CERN-ATS-Note-2011-049 MD **LHC** Trai

en instability rise times in the LHC at injection and top energy, N. Mounet et al, CERN-ATS-Note-Transvers 2011-035 MD

Head-on beam-beam tune shifts with high brightness beams in the LHC, R. Alemany et al, CERN-ATS-Note-2011-029 MD Test of luminosity levelling with separated collisions, R. Alemany et al, CERN-ATS-Note-2011-028 MD

50 and 75 ns operation in the LHC: Vacuum and Cryogenics observations, G. Arduini et al, CERN-ATS-Note-2011-046 MD

BPM Offset Determination by Sinusoidal Quadrupole K-modulation, T. Baer et al, CERN-ATS-Note-2011-043 MD

The Achromatic Telescopic Squeezing (ATS) MD part I, S. Fartoukh et al, CERN-ATS-Note-2011-033 MD

Summary of MD on nominal collimator settings, R. Assmann et al, CERN-ATS-Note-2011-036 MD

Un-squeeze to 90 m, H. Burkhardt et al, CERN-ATS-Note-2011-032 MD

Collimator losses in the DS of IR7 and guench test at 3.5 TeV, R. Assmann et al, CERN-ATS-Note-2011-042 MD

Studies of longitudinal single bunch stability, T. Argyropoulos et al, CERN-ATS-Note-2011-041 MD

TI8 shielding studies and angular alignment of TDI and TCDQ, W. Bartmann et al, CERN-ATS-Note-2011-040 MD

2011 MD Lessons

1	
	Presented in various talks, so I do not repeat it here
	□ see Monday + Tuesday sessions
	□ A lot of "surprising" and "not surprising" good news identified.
	Example of lessons taken already during 2011 run:
	 Increase of bunch currents and decrease of emittance after review of MD results in "mini-Chamonix" meeting July 2011.
	□ Decrease of beta* from 1.5m to 1.0m in early September 2011.
	□ No full re-setup of collimation / MP during year, except IR changes.
	□ Feed forward of MD results into operational settings (BI, RF,).
	□ Delay of LS1 collimation upgrade for the IR3 dispersion suppressors
	Full safety guaranteed with up to 110 MJ beams - not a
	single close call or accident (not even accidental quench):
	□ During MD execution.
	□ For machine changes fed forward into operation.

p-p Peak Luminosity in 2011

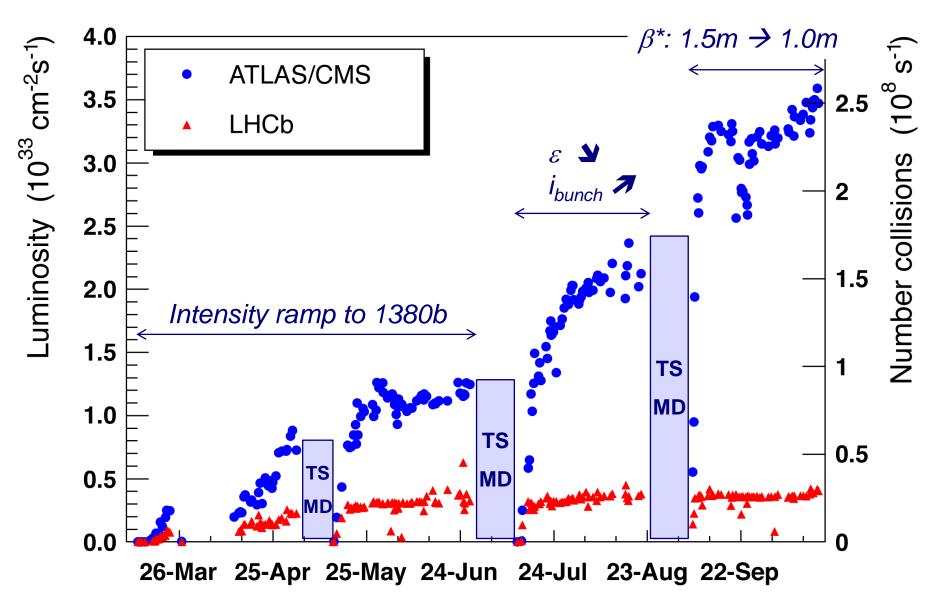


Figure Jörg Wenninger

p-p Peak Luminosity in 2011

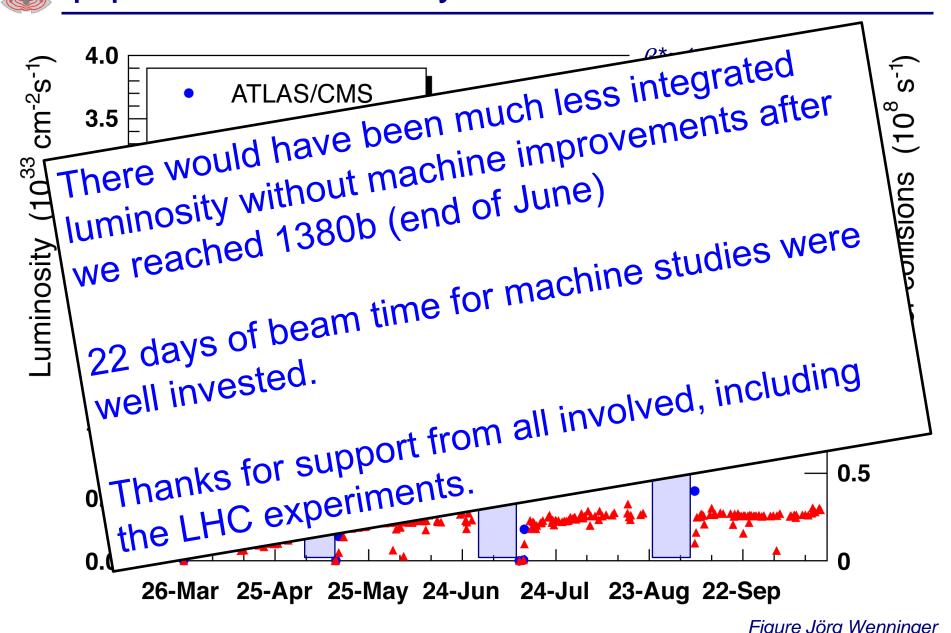
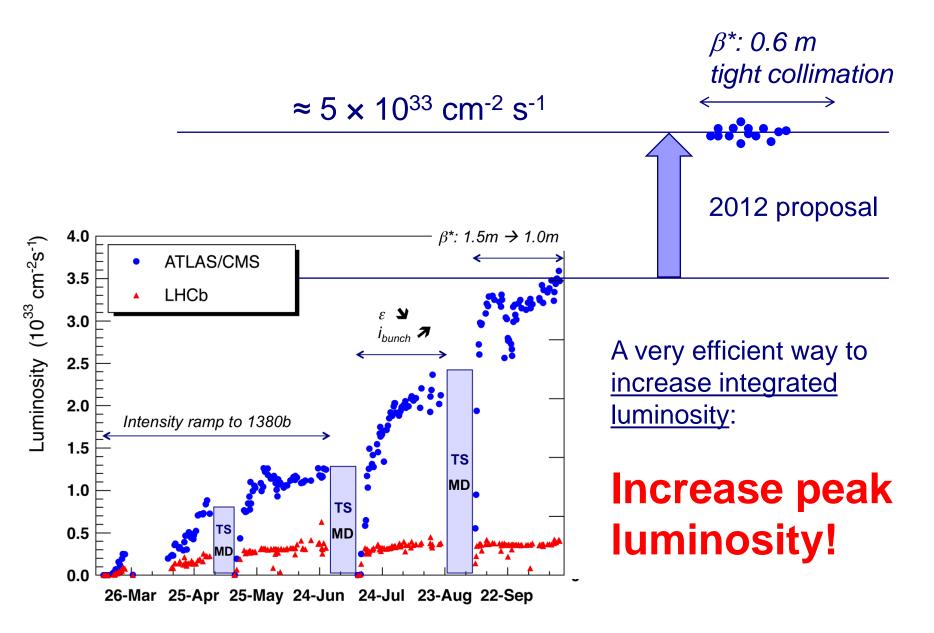
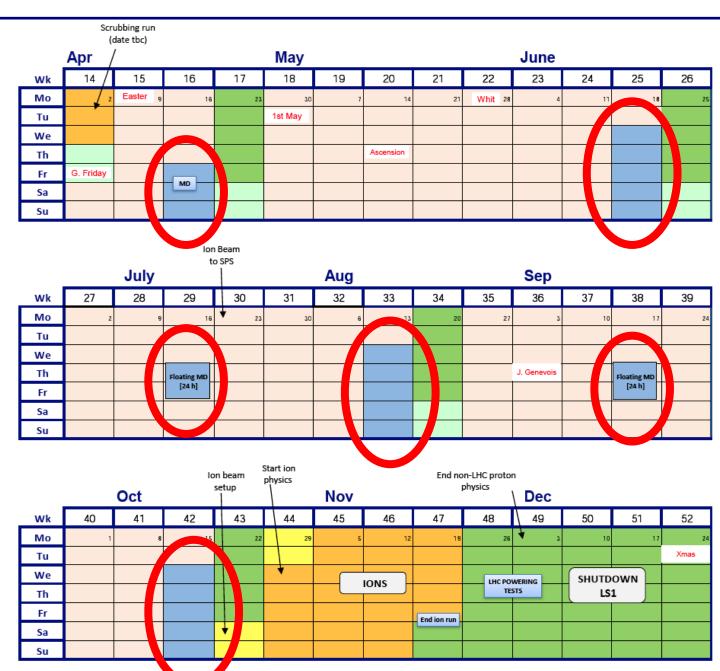



Figure Jörg Wenninger

...2012 even better (based on 2011 MD results)



7/2/2012

R. Assmann

LHC Schedule 2012

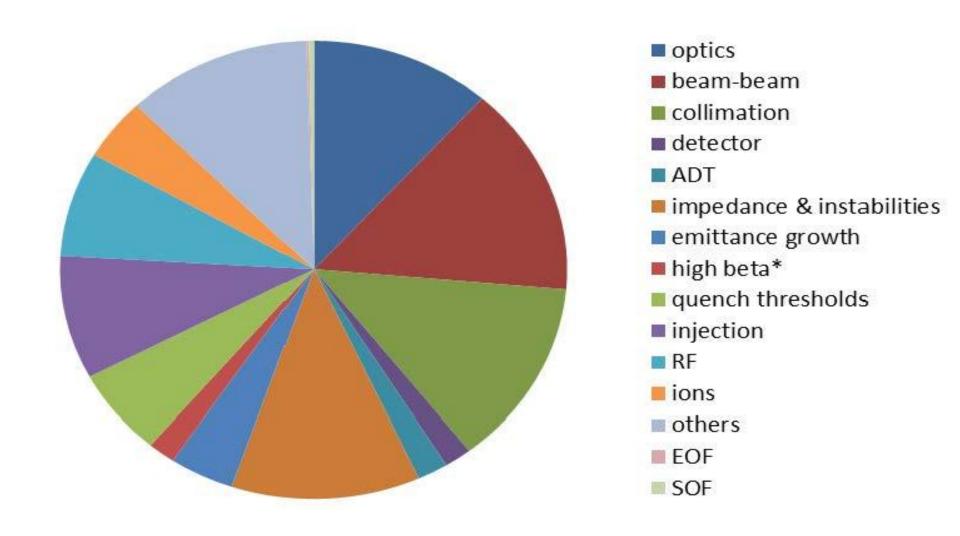
MD Time Scheduled in 2012

- 22 days allocated to machine development in 2012.
- 4 long MD blocks to technical stops (executed just before):
 - 1 block of 3 days

- → 9 shifts of 8h
- 3 blocks of 5 days \rightarrow 45 shifts of 8h
- 2 blocks of floating MD's, not coupled to technical stops:
 - 2 blocks of 2 days
- → 12 shifts of 8h
- 66 shifts ~50-60 MD's Total available:
 - 420 h (with 80% efficiency)
- Will continue the way we organized last year.
 - Make sure that this time is used efficiently and according to the priorities approved by the LHC Machine Committee (LMC).

2012 MD requests

title 1 MKI UFO	time [h]	energy 450	spacing [ns]	current	requestor Tobias Baer	theme	MP class	
2 ATSonties	16	490	0.57	ngn kow	Stenhane Fartoukh	HI-IHC	L A	
3 bb limit HO with unequal beams	16			medium	Herr / Papotti	HI-LHC	n n	
4 bb limit, LR separation	24	4000		medium+	Herr / Papotti	HL-LHC	č	
5 bb limit, LR intensity	8	4000	50	medium+	Herr / Papotti	after LS1	c	
6 large Piwinski angle	16			medium	Fartoukh / Zimmermann	HL-LHC	A	
7 BIMDs	91			medium	Biteam	2012	B (and A)	
8 CaC	8			medium	Assmann / Fartoukh	HI-THC	A	
9 Transverse noide & coh. bb 10 bb emittance growth due to transv. noise	16 16	4000 4000		medium+	Herr / Papotti Buffat et al	2012 HL-LHC	C B	
11 Source of transverse emittance blow up	16			high	Arduini	2012	ċ	
12 LR beam-beam with flat beams	24	4000		medium+	Herr / Papatti	HL-LHC	č	
13 Tune close to 1/2 integer	16	4000		medium+	Calaga et al	HL-LHC	Ċ	
14 High pile up	8	4000	NA	medium	Fartoukh	HL-LHC	В	
15 HV passive compensation	16			medium+	Calaga et al	HL-LHC	C	
16 compensation of IR nonlinearities	12	4000		law	Tomas	2012	A	
17 Quench margin at top energy	16 0.5	4000 450/4000		medium+ high	Redaelli / Wollmann	after LS1	C C	EC
18 Halo scraping 19 Transverse emittance blow up at injection	10			ngn medium+	Wollmann / Burkart Metral / Mounet	2012	Č	EU
20 TCBI at flat top and octupole stabilization	20			medium+	Mounet / Metral	after LS1	B/C?	
21 Impedance budget at injection	6			law	Biancacci	2012?	A	
22 Multibunch tune shift at flat top	8	4000	25+50	medium+	Mounet / Metral	2012?	В	
23 Multibunch tune shift at injection	8			medium+	Mounet / Metral	20127	В	
24 TCBI at flat top and octupole stabilization	1	10000		high	Mounet / Metral	after LS1	D	EC
25 Beam losses at injection	16		1000	medium+	Bartmann / Bracco	after LS1	В	
26 Probing the single bunch limits in LHC 27 Quench limit investigation	6 16	450 450		medium law	Salvant Bracco et al	HL-LHC 2012	В С	
28 Asynchronous dump in collimation set up	8			kow	Rossi / Lari / Cauchi	after LS1	Ċ	
29 Scraping scans for beam shape	8			medium	Wollmann / Burkart	after LS1	8	
30 Protection from long devices	16	450/4000		law	Bartmann / Bracco	2012	A	
31 LHC transverse impedance	10	450/4000	NA	medium	Redaelli / Salvant	2012	B	
32 Injection matching and emittance preservation	16			law	Ka in	2012	В	
33 Impedance and beam heating of long protetion devices	16	450	250	medium+	Goddard	2012	В	
34 LHC transfer line stability	16 8	450 4000	100	medium+	Kain	2012	B C	
35 Wire scanner quench test at flat top 36 Optimization of ADT in the ramp	12			medium+	Sapinski Hofle	2012	8	
37 Noise properties of ADT with FB on and off	5			medium+	Hafle	after LS1	A	
38 Residual tune signal in damper signal	6		25525	medium+	Hafle	after LS1	A	
39 ADT Q/Q' diagnostics possibility	6	450/4000	50	high	Hafle	2012	В	
40 Collimation studies with different settings	24	4000	80.5	medium+	Ass ma nn	after LS1	B	
41 Quench test at injection energy	8			medium	Priebe	2012	A?	
42 Loss maps with transverse damper	8			medium+	Salvachua	2012 HL-LHC	Bar C B	
43 Collimation with beta*=40 cm 44 Fast collimator setup at 3.5 TeV	8	1 2755	140	medium medium	Bruce Valenting	2012	B	
45 intensity limitations for 25 ns operation	24			medium+	Arduini	after LS1	B	
46 Operational development MD	48	450/4000		law	Wenninger	after LS1	A or B	
47 Quench test at nominal energy	8	4000	NA	medium	Priebe	2012	C	
48 Scraping with tune excitation	16			medium	Bruce	HI-LHC	A or B	
49 Nonlinear beam dynamics	12	450	50000	, kow	Giovannozzi et al	HL-LHC	A	
50 Transfer & injection of high brightness bunches w SPS Q20	16	450 4000	80.5	medium+	Bartmann et al	after LS1	c	
51 Single bunch parameter evolution 52 Effective kontiudinal broadband impedance	7			high medium+	Pa potti Sha poshnikova	2012 after LS1	A B	
53 Movements IT with beam at injection	8	: "".	1421	low	Wenninger	2012	A	
54 Sensitivity of OPS thresholds to FB systems	8			high?	Denz et al	after LS1	A	
55 Loss of Landau damping during ramp	6			medium+	Sha poshnikova	2012	В	
56 Ion collimation loss mitigation	16	4000	100 ar 200	medium+	Jowett	2012	C	
57 Proton lead intensity limit	16				Jawett	2012	C	
58 Proton collimation loss mitigation	16	4000		medium+	Jawett	after LS1	C	
59 De-squeeze to beta*=500	8			kaw	Burkhardt	2012	A	
60 Scraping to 1 micron emittance at to energy 61 RF cavity non-linearities	8 16			medium medium	Burkhardt Calaga	2012 HL-LHC	A A	
62 Longitudinal blow up studies	16			medium+	Raudrenzhien	2012	B	
63 RF feedback optimization with circulating beam	4	450/4000		medium	Baudrenghien	2012	B	(E
64 Commissioning of longitudinal damper	16			medium+	Baudrenghien	2012	В	2000
65 Commissioning of p-Pb rephasing using p	8			medium+	Baudrenghien	2012	В	
66 Longitudinal stability for batch	16			medium+	Baudrenghien	after LS1	В	
67 Valtage modulation to minimize klystron power	16	450/4000		medium+	Baudrenghien	after LS1	В	
68 Longiudinal stability of batch	16	450		medium+	Baudreng hien	after LS1	B B	
69 Aperture measurements at 3.5 TeV w ADT blow up	8			medium	Redaelli Redaelli	2012	8	
70 Collimation cleaning during the ramp w ADT blow up 71 Fast beam losses at the collimators	8	3,000		medium	Redaelli	2012	В	
72 Combined ramp & squeeze	8	100000000		law	Redaelli	after LS1	A	
73 Luminosity leveling with dynamic beta* change	8	20.000		medium	Redaelli	after LS1	Ĉ	
74 LHC linear chromaticity	6	450		law	Tomas	2012?	A	


MD requests for 2012 submitted in November & December 2011

76 requests in total

total time requested: 913.5 h available time: 420 h

Distribution of MD Requests

Slide Frank Zimmermann, Evian 2011

Limiting Time Availability and Priorities

- Not enough MD time to do everything in 2012.
- In the following propose a <u>list of MD goals for 2012</u> that we ask comments and feedback on:
 - □ Has been discussed in LHC Study Working Group
 - □ What is missing? What should be removed? Input on priorities?
- Three categories:
 - □ MD's for operation and physics.
 - MD's for future running.
 - □ MD's with lower priorities (scheduled if time allows).
- This is still preliminary!

Operation & Physics I

- 1. Understand beam heating effects around the LHC ring.
 - a) Establish limits for <u>safe intensity without hardware damage</u>.
 - b) Requires identification of critical locations → see report by Vincent Baglin.
 - c) Requires temperature sensors at critical locations.

2. Understand & optimize transverse emittance growth:

- a) Measure <u>beam-beam emittance growth</u> due to transverse noise.
- b) Noise properties of <u>transverse damper</u> (ADT): FB on and off.
- c) Optimization of ADT in <u>ramp</u>.

Operation & Physics II

- 3. Demonstrate RF setup for **proton-lead physics**:
 - → Ramp many bunches.
 - b) → Prepare ion physics run at end of year.
- 4. Establish an LHC optics with a beta* of 500 m.
 - Depends on physics priorities.
 - Prepare for small angle physics runs after LS1.

Operation & Physics III

5. Understand and optimize longitudinal beam dynamics in LHC:

- a) Understand longitudinal impedance in LHC.
- b) Study voltage modulation (> minimize transient power loads)
- c) Optimize bunch length blow-up (> minimize heating effects).
- d) Set up longitudinal damper.

6. Establish automatic and very fast collimator setup:

- a) Setup rate should reach 9 Hz (~10 times faster).
- b) Hope to achieve maximum during commissioning.

Operation & Physics IV

7. Calibrate and optimize LHC beam instrumentation:

a) Special fills (MD) for cross-calibration

8. Compatibility tune and ADT:

- a) Establish residual tune signal in damper signal and provide to tune feedback.
- b) ADT Q/Q' diagnostics compatibility.

9. Equalize beta* in ATLAS and CMS:

a) Automatic K modulation for beta*.

Future Running I

1. Characterize future operation with 25ns:

- a) Establish reliable nominal <u>injection</u> with 288b batches.
- b) Establish nominal intensity of <u>2808 bunches with 25ns</u> at injection: 2808 x 1.2e11 (if safe for beam heating)
- c) Ramp as many batches as possible: ramp at least 288b (25ns) for peak current within 3 µs → demonstrate the <u>safe RF</u> operation with 200 kW klystron power.
- d) With ramp of 25ns batches determine UFO scaling.
- e) Understand <u>LR beam-beam limit</u> for 25ns: reduce crossing angle for 25ns fill, observe losses.

Future Running II

2. Quantify required tolerances for **non-linearities** in LHC:

- a) What do we really need for <u>upgrade specifications</u> (e.g. for 11T dipoles)?
- b) Minimize cost of upgrades by only asking for required features.

3. Show feasibility very small beta* / very high pile-up:

- a) Test <u>ATS optics</u> to 10 cm beta*
- b) Set up <u>collimation for beta*=40 cm and flat machine</u> (ATS presqueeze).
- c) Demonstrate <u>pile-up of 90-110</u>.
- d) Establish <u>chromatic limits</u> in LHC collimation and MP: When do we need an ATS optics?
- e) Test Large Piwinski Angle.

Future Running III

- 4. Verify and check the **transverse impedance** limits of the LHC:
 - a) Impedance from the machine parts (collimators etc...)
 - b) Limitations in <u>octupole and ADT stabilization</u> (profit from much more correcting power at 3.5 TeV) for <u>acceptable emittance</u> <u>growth</u>.
 - c) Verify <u>7 TeV collimation settings</u> ("super-tight")
- 5. Show feasibility of **flat beam optics** in the LHC:
 - a) With standard or ATS optics.
 - b) Option to <u>increase luminosity and to reach 5e34 lumi after</u>
 <u>LS1 at 6.5 / 7 TeV</u>, before HiLumi upgrade?

Future Running IV

6. Establish benefits of the ½ integer tune working point:

 a) Demonstrate more room for LR beam-beam → lower crossing angle → lower beta*.

7. Study and improve LHC injection limitations:

- a) Check solutions for transfer line stability.
- b) Injection into LHC with Q20 optics in the SPS.

Proposed Criteria for Lower Priority

- Sufficiently conclusive results in 2011.
 - □ e.g. collimation efficiency
- MD studies that are becoming operational tools for 2012 commissioning.
 - □ e.g. aperture
 - □ e.g. ADT blow-up
- Studies on damaged devices.
 - e.g. TDI impedance, of course assuming full commissioning of these critical devices.
- Studies without impact on 2012 performance, that can be performed efficiently at 6.5 / 7 TeV in 2014.
 - e.g. detailed study of 7 TeV quench margin and required BLM thresholds.

Lower Priority MD's I (schedule as time permits)

1. Additional data for **UFO**'s at **MKI**'s at injection energy:

- a) MKI has minor influence on UFO extrapolation to high energy.
 Triggered by injection pulsing...
- b) Hardware investigations ongoing.
- c) Better to focus on UFO's in arcs and other locations?

2. Experimental benchmark on 7 TeV quench limits: Quench test on C14R2 at 4 TeV and in DS's.

- a) Several tests performed and data is on disk.
- b) No issues in operation so far.
- c) For adjusting BLM thresholds for 6.5/7 TeV: Possibly more efficient to do direct measurements after LS1 (with improved interconnects)?

Lower Priority MD's II (schedule as time permits)

3. Proton performance reach from beam losses:

- a) Several conclusive tests performed on collimation performance and losses in cold magnets.
- b) Collimation upgrades in DS's of IR3 delayed as a result.
- No limitation in sight for 4 TeV physics.
- d) Extrapolate results to nominal/ultimate performance at 7 TeV.

4. Understand **Pb intensity and luminosity limitations** and mitigation (orbit bumps).

- Several conclusive tests performed on collimation performance and losses in cold magnets.
- Achieved very high ion losses in some cold magnets, much higher than physics induced losses.
- c) Comfortable...

Lower Priority MD's III (schedule as time permits)

5. LHC aperture measurements:

a) Will be used as operational technique in commissioning.

6. Studies on **TDI impedance**:

- a) We know that impedance deteriorated.
- b) We know that there is hardware damage.
- c) Lessons are of limited value.
- d) Include as a priority into general survey of beam-induced heating.

7. Controlled beam blow-up with ADT:

a) Will be used as operational technique in commissioning.

R. Assmann

Operation & Physics: 9 major MD goals proposed.

- 1. Understand beam heating effects around the LHC ring.
- Understand & optimize transverse emittance growth.
- Demonstrate RF setup for proton-lead physics.
- 4. Establish an LHC optics with a **beta* of 500 m**.
- 5. Understand and optimize longitudinal beam dynamics in LHC.
- Establish automatic and very fast collimator setup.
- 7. Calibrate and optimize LHC beam instrumentation.
- B. Compatibility tune and ADT.
- Equalize beta* in ATLAS and CMS.

Future running: 7 major MD goals proposed.

- 1. Characterize future operation with 25ns.
- Quantify required tolerances for non-linearities in LHC.
- 3. Show feasibility very small beta* / very high pile-up.
- 4. Verify and check the **transverse impedance** limits of the LHC.
- 5. Show feasibility of **flat beam optics** in the LHC.
- 6. Establish benefits of the ½ integer tune working point.
- 7. Study and improve LHC injection limitations.

Reduced priority MD's: 7 goals. To be scheduled as time allows.