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Introduction

Why soft QCD?

Useful for validating and tuning models of particle production

Help to deal with pile-up, soft backgrounds for other processes

Insight into the physics of hadronic cross-sections and hadron formation

Measuring soft QCD at ATLAS

Soft QCD measurements rely heavily on

Inner tracking detectors: sensitive to charged particles with pT > 100 MeV and
|η| < 2.5

Electromagnetic and hadronic calorimeters: sensitive to electrons/photons and hadrons
that have ET > a few hundred MeV and |η| < 4.9.

MinBias events: inclusive collisions triggered by scintillators (2.1 < |η| < 3.8)

ATLAS measurements

K0
S and Λ production

Rapidity gap cross-sections

Two particle angular correlations

Forward-backward correlations

Azimuthal ordering of charged hadrons

Underlying event in charged-particle jet events
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K0
S and Λ production

PRD 85 (2012) 012001

K0
S and Λ candidates identified by fitting pairs of opposite-sign tracks to a

common vertex and cutting on
transverse flight distance between primary (PV) and secondary (SV) vertices
the pointing angle, between the particle momentum and the PV→SV vector

Signal extracted in each bin of pT and η by fitting invariant mass distribution.

Data corrected for detector inefficiency
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Rapidity gap cross-sections
EPJ C72 (2012) 1926

Detector-level gap algorithm

Detector divided into η-rings for |η| < 4.9

Ring is empty (for a given pcutT ) if no
- track with pT > pcutT and |η| < 2.5
- calorimeter cluster with pT > pcutT and E
above noise threshold

Measurement definition

Inelastic cross-section as a function of the
forward rapidity gap size (∆ηF )

Forward gap defined as largest span of
empty rings from edge of calorimeter

Measurement corrected to particle-level
(gap defined using stable particles)

Tests proportions of ND, SD+DD
components
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Rapidity gap cross-sections
EPJ C72 (2012) 1926

Inelastic cross-section

herwig++ has no diffraction breakdown

Structure based on hadronization model

Weird shape - sensitive to hadronization
model

Three values of pcutT : 200, 400, 800 MeV

Measurement can be used to constrain
differential contributions and hadronization

Cross-section as a function of ξcut

ξX = M2
X /s, ξcut is a minimum

Corresponds to an integral of the above
plot

More low mass SD than in theory → more
low mass diffraction

Shown by steepness of ATLAS → TOTEM
transition
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Two Particle Angular Correlations
arXiv:hep-ex/1203.3549

Why correlations?

Correlations between final state particles
indicate a common origin for their
production.

Pattern of correlations can be complicated
- MC generators need to describe this

∆η and ∆φ correlations

Foreground - Intra-event

Background - Inter-event

Measure F/B

R =
〈(Nch − 1)F (Nch,∆η,∆φ)〉

B(∆η,∆φ)
− 〈Nch − 1〉

Fully corrected for detector effects

Observed number of charged tracks
corrected using a trail-blazing technique
(HBOM)
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Forward-backward Correlations
arXiv:hep-ex/1203.3100

Forward-backward correlations

Correlations between the forward and backward
regions for

Charged particle multiplicity

Total transverse momentum of charged
particles

Forward-backward multiplicity correlation

ρnfb =
〈(nf − 〈nf 〉)(nb − 〈nb〉)〉√
〈(nf − 〈nf 〉)2〉〈(nb − 〈nb〉)2〉

First measurement of summed-pT
correlations

Data corrected for detector effects using
multiple regression - would otherwise
reduce correlations

Latest MC tunes reproduce the
correlations in data
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Azimuthal ordering of charged hadrons
arXiv:hep-ex/1203.0419

Angular correlations

Spectral analysis of correlations between
the longitudinal and transverse
components of charged hadrons

Angular correlation spectrum
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|2

Data corrected for detector inefficiencies
and the measurement is presented at
particle level

Too much correlation in typical MCs, for
high-pT charged particles (top), but too
little correlation for low-pT charged
particles (bottom).
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Azimuthal ordering of charged hadrons
arXiv:hep-ex/1203.0419

Energy/angular correlation spectrum

SE (ω) =
1
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∑
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ω∆Xij −∆φij

)
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for Xj = 0.5Ej +
k<j∑
k=0

Ek

Interpretation

Large disagreement in all correlation
spectra

MC is well above/below data
increase UE: less correlation, MC goes
down (top looks better)
increase ISR: more correlation, MC goes up
(bottom looks better)
problems for MC tuning - can’t just turn
usual handles and fit all data
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Azimuthal ordering of charged hadrons
arXiv:hep-ex/1203.0419

Model: helix-ordered gluon chain

Helix-like structured gluon field at end of
parton shower

Azimuthal direction of hadron pT
coincides with helix string phase

Imposes correlations between adjacent
break-up points along string

Induces strong correlations between
angular and pT orderings

Correlations poorly described by
conventional hadron-production model

Some features consistent with string
fragmentation from helix-ordered gluon
chain

Ordered fragmentation effects could
improve soft particle
production/hadronization models
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Underlying event in charged-particle jet events
CERN-PH-EP-2012-148

Underlying event

Any hadronic activity not associated with hard
scattering process

Not possible to unambiguously assign particles to
the hard scatter or UE

Observables

Multiplicity and
∑

pT for charged particles

Leading jet: highest pT anti-kt jet with
pT > 4 GeV and |η| < 1.5

Transverse region:
π/3 < |φparticle − φjet | ≤ 2π/3

Different anti-kt R-parameters

pythia 6 (AUET2B) shows reasonable
agreement

Other generators need additional tuning of
soft-QCD parameters

Choice of hard scatter affects UE distributions!
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Summary

K0
S and Λ

K0
S distributions agree well with MC

Λ pT distribution shows substantial disagreement

Rapidity gap cross-sections

pythia, phojet better than herwig++

Larger low mass SD contribution than in theory

Two particle angular correlations

pythia much better than herwig++ (string/cluster model)

Large disagreements seen between data and MC
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Summary

Forward-backward correlations

Latest MC tunes perform well

Azimuthal ordering

Large disagreement in all correlation spectra

Helix-ordered gluon chain may improve things

Underlying event in charged particle jet events

pythia 6 shows reasonable agreement

Other MC generators need additional tuning

UE quantities depend on definition of hard scatter
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