Stephen Gibson CERN

on behalf of the ATLAS Collaboration

Outline

- Motivation:
 - Hard processes and precision tests of QCD
- Photons
 - Reconstruction and isolation
 - Prompt photons, diphotons and photon + jets.
- Jets
 - Clustering, cleaning and energy calibration
 - Inclusive and dijet cross sections
- Subjets
 - Jet mass and substructure
 - Tagging heavy boosted topologies
- Conclusion

Motivation

Why measure prompt photons and jets at the LHC?

- Precision tests of perturbative QCD in a new kinematic regime.
- Help constrain the parton densities in the proton (PDFs).
- Photon + jet is particularly sensitive to gluon content and photon fragmentation function.
- Important backgrounds for Higgs (γγ) and BSM.
- γ/jet calibration.

Why measure subjets?

- Jet shape is sensitive to non-perturbative fragmentation and underlying event.
- Jet substructure provides an extra handle to identify boosted heavy particles in searches for new physics.

F. Kraus

Identifying isolated photons

- Reconstruct photon clusters using finely segmented liquid argon-lead sampling calorimeter
 - Lateral and longitudinal shower shapes used to suppress hadronic background.
 - 9 discriminating variables with different cuts for converted (e⁺e⁻) and unconverted photons.
- Isolation requirement, E_TISO < 3GeV</p>
 - Select prompt photons which deposit energy in small radius; unlike ISR, FSR, light neutral mesons.

Prompt photons

- Disagreement below 25 GeV for central photons, $|\eta| < 1.7$, good agreement above.
- Results helped to constrain the gluon PDF and reduce uncertainty by up to 20%:

Nucl. Phys. B 3 311-338 (2012)

ATLAS measurements of photons, jets and subjets

Diphotons

- Generally good agreement; discrepancy with NLO at low $\Delta \phi$ (low m_{yy}) and $\Delta \phi \sim \pi$
 - Measurements comparable with those from CMS and Tevatron.
 - Recent γγNNLO calculations improve the agreement. arXiv:1110.2375v1 [hep-ex]

Isolated photon with jets

- New analysis with 37 pb⁻¹ recently published (23 May): Phys.Rev. D85, 092014 (2012)
 - Prompt photon with jet provides test of large hard-scattering scales (Q²) over a wide range of parton momentum fractions (x).
 - X ≥ 0.001 and 625 GeV² < Q² < 1.6×10⁵ GeV² extends to kinematic regions previously unexplored with this final state.
- Calculate cross-section separately in 6 angular configurations of jet and photon rapidity, to access regions of differing fragmentation contributions and parton momentum fractions.
 - Jet rapidity:
 - Central: $|\eta| < 1.2$
 - Forward: $1.2 \le |\eta| < 2.8$
 - Very forward: $|\eta| \ge 2.8$
 - Photon and jet rapidity:
 - Same sign: $\eta_{\gamma} * y_{j} \ge 0$
 - Opposite sign: $\eta_{\gamma} * y_{j} < 0$.

Stephen Gibson

Photon + jet cross section

At low E_T^{γ} < 45 GeV, NLO pQCD over-estimates measurement, as observed for prompt photon.

Stephen Gibson

PLHC June 7, 2012

Phys.Rev. D85, 092014 (2012)

Jets in ATLAS

Stephen Gibson

Jet reconstruction and calibration

p [GeV]

p [GeV

- Jets are reconstructed as 4-vector summations of noisesuppressed 3D clusters, grouped by a clustering algorithm:
 - Anti- k_{τ} , hardest constituent first; circular jet resilient to soft radiation. [standard in ATLAS, typically, R=0.4 or R=0.6]
 - Cambridge-Aachen, sest constituents first. [used in jet substructure and boosted object studies, R=1.2]
- Jet calibration restores the jet energy scale (JES)
 - Correct for non-compensating calorimeters, dead material, outof-cone effects, pile-up.
 - <5% JES uncertainty, validated in situ with Z+jet p_T balance:

Cacciari, Salam, Soyez

anti-k,, R=1

2008

HEP 0804:063

Inclusive jet and dijets, 37 pb⁻¹

Measure inclusive jet cross section for jet rapidity, |y|< 4.4 and 20 <pT<1500 GeV.</p>

 Data agrees well with NLO pQCD prediction over many orders of magnitude.

- Final 2010 paper arXiv:1112.6297 extends kinematic reach of first publication (EPJC 71.1512):
 - I7 nb⁻¹ → 37 pb⁻¹
 - Max jet $p_T: 600 \text{ GeV} \rightarrow 1.5 \text{TeV}$
 - Low pT: 60 GeV \rightarrow 20 GeV
 - Max dijet mass, m₁₂: I.8 → 4.8 TeV
 - Forward rapidity: $|y| < 2.8 \rightarrow 4.4$

Stephen Gibson

PLHC June 7, 2012

Inclusive jets 37pb⁻¹

Comparison with NLO pQCD (including non-pQCD corrections)

- Measured cross-section in agreement with NLO pQCD predictions
- Data at edge of phase space promises to further constrain gluon PDFs (in p_T limited region, where no new physics is expected).

Dijet cross-sections 37 pb⁻¹

 $v^* < 0.5$

2×10

10

ATLAS

Dijet double differential cross section, in bins of half the rapidity separation between leading jets: $y^* = |y_1 - y_2| / 2 < 4.4$. Anti- $k_T R=0.6$

Ratio wrt CT10

Stephen Gibson

PLHC June 7, 2012

 $\int L \, dt = 37 \, \text{pb}^{-1}$

anti-k, jets, R = 0.6

Data with

statistical error

s = 7 TeV

2

1

High mass dijets 4.8 fb⁻¹

- Dijet mass: 260 GeV < m_{12} < 4.6 TeV, y^* < 2.5
- Negative trend in data emerging at large y* and m_{12} (up to 40%).
 - POWHEG showered with Pythia 6 describes the data better than NLOJET++

Stephen Gibson

PLHC June 7, 2012

Ratio wrt NLOJET+

1.5

0.5

3×10-1

Jet mass and substructure

- Jets are composite objects:
 - Jets formed from two- and three- body decays have different internal structure to quark / gluon initiated jets.
 - Boosted objects can be identified by jet substructure and suppress background QCD.
 - Studies of jet substructure motivated by boosted H(bb):
 - Also a test of non-perturbative effects like fragmentation and hadronisation.
- Several ATLAS publications to date:
 - Jet shapes: Phys. Rev. D83 (2011) 052003
 - Jet fragmentation: Eur. Phys. J. C 71 (2011) 1795
 - Jet mass and substructure variables: JHEP 05 (2012) 128
 - Jets properties for boosted objects: ATLAS-CONF-2012-044

- Measure mass of jets, clustered by anti-kT F Cambridge-Aachen R=1.2.
 - Jet p_T 200 600 GeV, |y|<2
- NLO predictions generally agree with overall shape:
 - Pythia tends to be too soft.
 - Herwig++ tends to be too hard.
- Applying splitting and filtering improves the agreement.

et mass and

tructure

b

mass drop

JHEP 05 (2012) 128

filter

PRL 100, 242001 (2008)

Stephen Gibson

Properties of boosted jets

Variables designed for new physics searches are generally well modelled by Pythia, while Herwig++ 2.4.2 predicts a more isotropic energy flow.

ATLAS-CONF-2012-044

Stephen Gibson

JHEP 05 (2012) 128

Pile-up corretions

0.6

0.4

0.3

0.2

0.1E

Normalized entries

- Correct overlap from multiple protonproton interactions:
 - Data-driven complementary cone method applied to individual variables.

Phys. Rev. D 84, 114025 (2011)

Splitting and filtering largely eliminates dependence of jet mass on pile-up.

Data 2010, L=35 pb⁻¹

NPV>1, Raw: <M> = (83.2 ± 0.1) GeV

NPV=1: <M> = (76.7 ± 0.3) GeV

NPV>1, Corrected: $<M> = (76.0 \pm 0.1)$ GeV

Anti-k, jets, R=1.0

p₋ > 300 GeV

|η| < 2

ATLAS preliminary

Summary and outlook

- Comprehensive measurements of photons, jets and subjets provide precision tests of perturbative QCD in a new kinematic regime.
- Photon and diphoton cross-sections highlight regions where modelling can be improved, e.g. low E_T^γ< 45 GeV region.</p>
 - Inputs helped to constrain gluon PDFs and reduce uncertainty by up to 20%.
 - Diphoton: $\gamma\gamma$ NNLO needed for best agreement.
- Extended range of inclusive and dijet cross-sections measurements with 2010 and 2011 data:
 - Good agreement with NLO pQCD over many orders of magnitude.
 - Parton shower tunes constrained for high mass dijets.
- Many jet substructure observables have been measured in 2010 data:
 - Great progress in understanding jet substructure techniques.
 - Useful for identifying boosted hadronic topologies in searches for new physics in 2011 and 2012 data.

Back up

Stephen Gibson

Jets with flavour:

- Measurements of D^{*+/-} meson production in jets: Phys. Rev. D85 (2012) 052005
 - see poster by Andrea Ferretto Parodi: "Measuring the b-jet tagging efficiency on c-jets containing D* mesons with ATLAS data"
- b-jet inclusive and dijet cross-sections: Eur.Phys.J.C 71 (2011) 1846
 - see Peter Krieger's talk: "Inclusive jet and multijet physics"

