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The Standard Model includes neutrinos as massless particles, but neutrino oscillations showed, that neutrinos are not massless. A simple extension of adding gauge singlet fermions to the particle
spectrum allows normal Yukawa mass terms for neutrinos. The smallness of the neutrino masses can be well understood within the seesaw mechanism (type I). After spontaneous symmetry breaking
of the Standard Model gauge group one obtains a (ny +ng) X (ny +ng) Majorana mass matrix M, for neutrinos. The mixing between the ng ”right-handed” singlet fermions and the neutral parts
of the ny, lepton doublets gives masses for the neutrinos which are of the size expected from neutrino oscillations.

The diagonalization of the mass matrix gives rise to a split spectrum consisting of heavy and light states of neutrinos given by UT M, U = diag(m!®“" m!ca¥) For the case np = 1 we diagonalize M,

nr nR

with a rotation matrix determined by two angles, two masses, and Majorana phases. For the case ng = 2 we diagonalize the mass matrix with a unitary matrix determined by complex parameters,

four masses, and Majorana phases. In both cases we take ny = 3.

We calculate the one-loop radiative corrections to the mass parameters which produce mass terms for the neutral leptons. In both cases we numerically analyse light neutrino masses as functions of

the heavy neutrinos masses. Parameters of the model are varied to find light neutrino masses that are compatible with experimental data of solar Am? and atmospheric Am

2 DESCRIPTION OF THE MODEL
2.1 THE TREE LEVEL

The Yukawa Lagrangian of the leptons is given by

ﬁY = —7 (¢T£RM5 + ¢TVRMD> DL + H.c. (1)

in a vector and matrix notation. fg, vg, and Dy = (v, £1)" are the vectors of the right-
handed charged leptons, of the right-handed neutrino singlets, and of the left-handed
lepton doublets, respectively. The charged-lepton mass matrix M, is n;, X ny, while the
Dirac neutrino mass matrix Mp is ng X ny. The vacuum expectation value of the neutral
component of ¢ is v/v/2. The mass terms for the neutrinos are

1
—ﬂRMDVL — 5 IchMRpg + H.c. , (2)

where C'is the charge-conjugation matrix and Mg is non-singular and symmetric. Equa-
tion (2) can be written in a compact form as a mass term with an (ng + ng) X (np +ng)

symmetric mass matrix
0 ML
M, = P (3)
Mp Mg

where the hat indicates that M is a diagonal matrix. M, can be diagonalized as
UM, U = m = diag (my, ma, ..., My, 1np) » (4)

where the m; are real and non-negative. In order to implement the seesaw mechanism
1, 2] we assume that the elements of Mp are of order mp and those of Mg are of order mg,
with mp < mpg. Then, the neutrino masses m; with i = 1,2,... ny are of order m%, /mpg,
while those with ¢ = ny; + 1,...,n + ng are of order mg. It is useful to decompose the
(np, +ng) X (np + ng) unitary matrix U as [3, 4]

i)

where the submatrix Uy, is ny X (ng, +ng) and the submatrix Ug is ng X (ny +ng). With
these submatrices, the left- and right-handed neutrinos are written as linear superpositions
of the n;, + ng physical Majorana neutrino fields y;:

v, = UrPrx and vg=UgPRYX, (6)

where P, and Pg are the projectors of chirality.
The leptonic charged-current Lagrangian is

g -
ECC — _W E 'LLP U +H.C.7 7
J2 Y LELULX (7)

where ¢ is the SU(2) gauge coupling constant. Three neutral particles are coupling to
neutrinos. The interaction of the Z boson with the neutrinos is given by
Ly = e ZuXy" [PL (UIT;UL) — Pr (UIJ;UZ)} X ; (8)
where ¢, is the cosine of the Weinberg angle.
The Yukawa couplings of the Higgs boson h° to the neutrinos are given by

LY () = ﬁ K% [(U;MDUL + Ut MﬁU;;) P+ (U;M;UR + U}QM;;U;) PR} X.
(9)

The coupling of the neutrinos and the Goldstone boson G° is similar to that of the Higgs
boson h°. The right-hand side expression in (9) gets multiplied by a factor (—i).

2.2 ONE-LOOP CORRECTIONS

In the standard seesaw, one-loop corrections to the mass matrix , i.e. the self energies,
are determined by the neutrino interactions with the Z boson, the neutral Goldstone
boson G, and the Higgs boson A" [5]. In the calculation of the self energies the neutrino
couplings to the Z boson as well as the Higgs and Goldstone bosons are determined by
egs. (8) and (9). Each diagram contains a divergent piece but when summing up the three
contributions the result turns out to be finite [6].

Once the one-loop corrections are taken into account the neutral fermion mass matrix

is given by
T T T
v Mp+oMp Mp+ 6Mp Mp Mg

where the 0343 matrix appearing at tree level (3) is replaced by the contribution d M. This
correction a symmetric matrix, it dominates among all the sub-matrices of corrections.

Neglecting the sub-dominant pieces in (10), one-loop corrections to the neutrino masses
originate via the relation

6My, = UpS(p")U] = U (0)U] (11)

where we evaluate the one-loop neutrino self-energy Y7 at zero external momentum
squared. After contractions of similar terms the final expression for the finite one-loop
correction is given by

sMp = sMP + M), (12)
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neutrino oscillations.

3 CASEnp =1

First we consider the minimal extension of the standard model adding only one right-
handed field v to the three left-handed fields contained in vy..

We use the parametrization of Mp = mpa’ with |d@| = 1. Diagonalization of the
symmetric mass matrix M, (3) in block form is:
0 i M, 0
vTmu=vr (TP o= ). (15)
mpa MR 0 Mh

The non zero masses in M, and M, are determined analytically by finding eigenvalues
of the hermitian matrix M, M. These eigenvalues are the squares of the masses of the
neutrinos M, = diag(0,0,m;) and M, = my,. Solutions m% = mym; and m% = (my, —
my)? ~ m3 correspond to the seesaw mechanism.

We can construct the diagonalization matrix U for the tree level from two diagonal
matrices of phases and three rotation matrices Upee = Us(¢;)Ura(ar)Uss(az2)Use(5)Us,
where the angle [ is determined by the masses m; and m;. The values of ¢; and «; can
be chosen to cover variations in Mp.

Diagonalization of the mass matrix after calculation of one-loop corrections is per-

formed with a unitary matrix Ulpep = UegvUys(91, 92, ¢3), Where Uy is an eigenmatrix

of MV MV and U, is a phase matrix. The second light neutrino obtains its mass from
radiative corrections. The third light neutrino remains massless.

It is possible to estimate masses of the light neutrinos from experimental data of
solar and atmospheric neutrino oscillations (Am2 = 7.59 x 1072 GeV?, Am2,,, = 2.43 x

1072 GeV?) assuming that the lightest m;, = 0 and considering the normal ordering of
the light neutrinos:

my, = 5.0 x 1071 GeV,
my, = 8.7 x 107" GeV. (16)

However the numerical analysis shows that we can reach those values only for a heavy
singlet with the mass near to the Plank scale, see Fig. 1.
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Figure 1: Calculated masses of two light neutrinos as a function of the heavy neutrino
mass my,. The mass of the third light neutrino is zero, when nz = 1. Solid lines show the
boundaries of allowed neutrino mass ranges when the model parameters are constrained by
the experimental data on neutrino oscillations. Due to the scale, the band of the allowed
m;, values appears as a line. The dashed line indicates the estimated experimental mass
of the second light neutrino for the case np = 1.

4 CASE np = 2

If we add two singlet fields v to the three left-handed fields v, the radiative corrections
give masses to all three light neutrinos.

Now we parametrize
~T
mp,a
Mn = - 17
o= (o) )

with |@ = 1 and |b| = 1. Diagonalizing the symmetric mass matrix M, (3) in block form
we write:

—

Osxs  mp,d mp,b 0
UTM,U=U" | mp,a’ . U= S (18)
leb

The non zero masses in M; and M, are determined by the seesaw mechanism: m%i ~

mp,my, and m%i ~ m,%i, t = 1,2. Here we use my > msy > mgs ordering of masses. The
third light neutrino is massless at tree level.

The diagonalization matrix for tree level Uiyee = Ura(@1, a2)Uegy (5i) Uy (9;) is composed
of a rotation matrix, an eigenmatrix of M, M and a diagonal phase matrix, respectively.

Diagonalization of the mass matrix including the one-loop correction is performed with
a unitary matrix Ulpep = UegvU, (i), where Uegy, is the eigenmatrix of M,,l)Mﬁl)T and U,
is a phase matrix.

In numerical calculations the model parameters as well as the derived masses of the
light neutrinos are obtained in several steps. First, the diagonal mass matrix for tree
level is constructed. The lightest neutrino is massless, and the masses of other two light
neutrinos are estimated from experimental data on solar and atmospheric neutrino oscil-
lations.

The masses of the heavy neutrinos are input parameters. This diagonal matrix is used
to constrain the parameters «; and ¢; that enter the tree-level mass matrix M, and its
diagonalization matrix Ue. Then the diagonalization matrix is used to evaluate one-
loop corrections to the mass matrix. Diagonalization of the corrected mass matrix yields
masses for three light neutrinos. If the calculated mass difference is compatible with the
experimental neutrino mass difference, the parameter set is kept. Otherwise, another set
of the parameters is generated. Figures 2-4 illustrate the obtained results.
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Figure 2: The masses m;, of the light neutrinos as functions of the heaviest right-handed
neutrino mass my,, for the case ng = 2. The value of my, is shown in the plots. The
black solid lines indicate the mean values of the scatter data.
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Figure 3: The masses m;, of the light neutrinos as functions of the lightest right-handed
neutrino mass my,, for the case ng = 2. The value of my, is shown in the plots. The
black solid lines indicate the mean values of scatter data.
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Figure 4: The ratio between the one-loop and the tree-level result for the masses of the

light neutrinos vy, (i = 1,2) with m>® = m{* + §m;°® as a function of the heaviest

right-handed neutrino mass my,, with m;, = 100 GeV fixed.

5 CONCLUSIONS

1. For the case ngp = 1 we can match the differences of the calculated light neutrino
masses to Am?2 and AmZ, only for a mass of the heavy singlet of order 10'" GeV.
Only normal ordering of neutrino masses is possible.

2. In the case ng = 2 we obtain three non vanishing masses of light neutrinos. The
numerical analysis shows that the values of light neutrino masses (especially of the
lightest mass) depend on the choice of the heavy neutrinos masses. The radiative
corrections generate the lightest neutrino mass and have a big impact on the second
lightest neutrino mass.

3. In future we plan to apply our parametrization to study the 7 polarization coming
from the decay of a W boson in the data of the CMS experiment at LHC and thus
determine restrictions to the parameters of the neutrino sector.
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