

Heavy-flavour results in pp collisions at LHC with ALICE

P. Antonioli INFN – Bologna for the ALICE Collaboration

Outline

- ALICE detector highlights for heavy flavour physics
- Physics motivations
- $c \rightarrow hadrons$: D mesons exclusive decays: D⁰, D⁺, D_s⁺, D^{*+}
- c,b → electrons
- c,b \rightarrow muons
- Conclusions

Note: for J/ ψ see L. Bianchi talk

The ALICE detector: some highlights for this talk

The ALICE detector: some highlights for this talk

Heavy-flavour in pp collisions @ ALICE

- pQCD generally more predictive for beauty than for charm
- ALICE can complement CMS/ATLAS/LHCb data at low p_t
- low p_t allows to explore PDF at low x
- (and... an essential baseline reference for PbPb) see Y. Pachmayer talk at this conference

Data compared with Fixed Order Next to Leading Log and Global Mass Variable Flavour Number Scheme computations (FONLL) M. Cacciari, M. Greco and P. Nason, JHEP 9805 (1998) 7

7 June 2012 - PLHC 20 (GM-VFNS) B. A. Kniehl et al, Eur. Phys. J C41 (2005) 199

 D^0

do/dpr [nb/(GeV/c)]

Exclusive hadronic decay channels: detection strategy

D ⁰ → K ⁻ π ⁺	(B.R. 3.87±0.85%)
$D^+ \rightarrow K^- \pi^+ \pi^+$	(B.R. 9.13±0.19%)
$D^{*+} \rightarrow D^0 \pi^+$	(B.R. 67.7±0.85%)
$D_{s}^{+} \rightarrow \phi \pi^{+}$	(B.R. 2.32±0.14%)

Identification of secondary vertex (D⁰ cτ≈123 μm, D⁺ cτ≈312 μm) Combinatorial background reduced via secondary vertex and PID

 $D^0 \rightarrow K^-\pi^+$ as example.

D'flight line-

primary vertes

secondary vertex

pointing angle 0

D⁰reconstructed momentun

Invariant mass analysis

Minimum bias trigger:

1 hit on SPD or two rings of the VO
forward scintillator detectors
→ covers 87% of inelastic cross section

Mass spectra examples at vs=2.76 TeV

D meson spectra: results at 7 TeV

- ✓ Both GM-VFNS and FONLL in agreement with data within uncertainties
- ✓ GM-VFNS central values lie systematically above data, FONLL below
- ✓ With reach down to 1 GeV/c → gluon distribution function probed down to x ≈ 10⁻⁴ (PDF CTEQ6.6 used here)

D meson spectra: results at 2.76 TeV

Total charm cross section

 $\sigma_{cc}^{tot}(7 \text{ TeV}) = 8.5 \pm 0.5 (\text{stat.})^{+1.0}_{-2.4} (\text{syst.}) \pm 0.1 (\text{BR}) \pm 0.2 (\text{FF.}) \pm 0.2 (\text{lum.})^{+4.0}_{-0.3} (\text{extr.}) \text{ mb.}$

Note also ALICE result on bb at Vs=7 TeV production (via J/ ψ): $\sigma(pp \rightarrow bb + X) = 244 \pm 64(\text{stat.})^{+50}_{-59}(\text{syst.})^{+7}_{-6}(\text{extr.}) \ \mu b$ for ALICE arXiv:1205.5880

for J/ ψ see L. Bianchi talk

And more...: D_s^+ and Λ_c

No significant p_T dependence within uncertainties suggests small differences in the shapes of c fragmentaton functions to strange and non strange mesons

- $\Lambda_{\rm c}$ in two decay channels:
- challenging, statistically limited
- Λ_c/D very interesting for PbPb program (possible enhancement due to recombination)
- PbPb requires detector upgrade

HF decays: contribution to the inclusive lepton spectra

- both charm and beauty have B.R. ≈ 10% to single electrons or muons → a way to measure c and b production
- again a channel where it is possible to explore low p_t region for ALICE
- key reference for PbPb collisions

Some references for electron spectra and heavy flavours:

-		√s (GeV/c)	p _t range (GeV/c)	
1	ISR	52.7	1.6-4.7	Phys. Lett. B53 (1974) 212
K	SppS (UA2)	630	0.5-2.	Phys. Lett. B236 (1990) 488
	Tevatron CDF	1960	7-60	Phys. Rev. Lett. 71 (1993) 500
	RHIC PHENIX	200	0.3-9	Phys. Rev. C84 (2011) 044905
	RHIC STAR	200	3-10	Phys. Rev. D83 (2011) 052006
7 June 2012 - PLH	LHC ATLAS	7000	7-26	Phys. Lett. B707 (2012) 438

Heavy Flavour Electrons: detection strategy

Complement TPC track selection and dE/dx analysis to make e-ID

TPC-TRD-TOF analysis

EMCAL analysis and inclusive spectra

P. Antonioli

Pb scintillator sampling calorimeter

- TPC track matched with EMCAL energy deposit for tracks with p_t>3 GeV/c
- ratio of E/p measured for these tracks
- Gauss + exp. function fit

- hadron contamination subtracted statistically
- TPC+TOF and TPC+TRD+TOF analyses agree at 1-4 GeV/c
- note TPC+EMCAL is larger due to different material budget → more photon conversion
- systematic uncertainties studied varying selection cuts (TPC+TOF 8.5%, TPC/TRD/TOF 25%, TPC/EMCAL 20%)

Background cocktail and electron spectrum

- 1) Dalitz decays of light neutral mesons + γ conversion \rightarrow from ALICE data + m_t scaling
- 2) $K \rightarrow e \pi v$
- 3) dielectron decays of quarkonia (J/ Ψ , Y)
- 4) e from partonic hard scattering (incl. prompt γ)
- ightarrow negligible due to selection cuts
- \rightarrow from ALICE and CMS data
- → NLO pQCD (PDF: CTEQ6M FF:⁵GRV)

Heavy flavour electrons

FONLL sys. unc. estimated varying parameters as per ccbar crosssection (plus $4.5 < m_b < 5.0 \text{ GeV/c}^2$)

Within uncertainties FONLL agree with data, note how theor. uncertainties grow at low p_t

nice complementarity: ALICE takes most of the total σ , ATLAS extends up to 26 GeV/c!

Identify the b contribution: impact parameter

Identify the b contribution: e-h azimuthal correlations

Heavy flavour decay muons at forward rapidity

ALICE μ spectrometer 2.5< η <4

- p_t > 2 GeV/c to reduce background
- decay μ dominant background,
- Background subtracted using MC (PYTHIA and PHOJET): main contribution to systematics: 13% (model) + 5-20% (transport)

Heavy-flavour decay muons at 7 and 2.76 TeV

p (GeV/c)

1.9% normalization uncertainty not included

ALICE,

data/FONLL

2.5 2 1.5

0.5

ALICE, Phys. Lett. B708 (2012)265

20

P. Antonioli

measurement) but well within uncertainties

useful recent check at vs=2.76 TeV

Outlook & conclusions

- wide range of results obtained by ALICE in pp for heavy flavours at Vs=7 and 2.76 TeV
- within uncertainties FONLL and GM-VFNS describe well data
- low p_T reach (down to 1-2 GeV/c) and PID capabilities allow ALICE to complement HF results of other experiments at LHC
- reference baseline for PbPb studies achieved
- J/ ψ in pp at ALICE (including polarization)
- heavy flavours in pPb collisions: will allow study of initial state effects and PDF nuclear modification

making good plans for 2012 pPb beams: see ALICE talks at.. PLHC2013 ☺

conference

see Y. Pachmayer talk at this

see L. Bianchi talk at this conference