Recent top physics results from the DØ experiment

Oleg Brandt on behalf of the DØ collaboration

II Physikalisches Institut, Georg-August-Universität Göttingen
What makes top so interesting?

• Compelling arguments that new physics can show up in the top sector:
 - Top is the heaviest quark discovered so far
 - Its Yukawa coupling is 0.996 ± 0.006
 - Special role in EWSB?
 - Since 17 years, our measurements have been consistent with SM predictions in the top sector within uncertainties
 - D0 and CDF collected thousands of tt events, enabling precise studies of top properties
 - There are recent measurements displaying tension between Tevatron data and the SM predictions (A_{FB}, R_B)
A wealth of top properties

- Color flow
- W helicity
- Anomalous couplings
- Rare decays
- Branching ratio
- CKM matrix element $|V_{tb}|$
- New physics contributions
- Mass, charge, width
- Spin correlation
- QCD charge asymmetry A_{FB}
- Cross section
- Differential cross section
- Production mechanism
- Lorentz invariance violation
- New physics contributions

+ electroweak single top production
Recent top physics results from DØ

A wealth of top properties

- Color flow
- W helicity
- Cross section
 - Differential cross section
 - Production mechanism
 - Lorentz invariance violation
 - New physics contributions
- Anomalous couplings
 - Rare decays
 - Branching ratio
 - CKM matrix element $|V_{tb}|$
 - New physics contributions
- Mass, charge, width
- Spin correlation
 - QCD charge asymmetry A_{FB}
- + electroweak single top production
A wealth of top properties

- Typically: we measure top properties in $t\bar{t}$ events
 - Dilepton channel: low backgrounds, but underconstrained kinematics and low rate
 - $l^+\text{jets}$ channel: good compromise between kinematic reconstruction, high rate, and backgrounds
 - All-hadronic channel: highest branching ratio, very high backgrounds from QCD multijet production
 - + other orthogonal channels...

Single top: high backgrounds, moderate rate, direct access to some observables (e.g. V_{tb})
More about the top birth place…

$\sqrt{s} = 1.96 \text{ TeV}$

Tevatron

$L \sim 10.5 \text{ fb}^{-1}$
Initial state @ Tevatron (and LHC)

- **Initial state for top-antitop pair-production rather different between Tevatron and LHC:**

<table>
<thead>
<tr>
<th>Tevatron</th>
<th>LHC</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>p̅p</code> initial state → CP eigenstate</td>
<td><code>pp</code> initial state</td>
</tr>
<tr>
<td>centre-of-mass energy: 1.96 TeV</td>
<td>centre-of-mass energy: 7 (8) TeV</td>
</tr>
<tr>
<td>Initial state: <code>qq</code> (≈85%), <code>gg</code> (≈15%)</td>
<td>Initial state: <code>qq</code> (≈30%), <code>gg</code> (≈70%)</td>
</tr>
</tbody>
</table>
Initial state for top-antitop pair-production rather different between Tevatron and LHC:

<table>
<thead>
<tr>
<th>Initial State</th>
<th>Tevatron</th>
<th>LHC</th>
</tr>
</thead>
<tbody>
<tr>
<td>(p\bar{p}) initial state</td>
<td>(CP) eigenstate</td>
<td>(pp) initial state</td>
</tr>
<tr>
<td>centre-of-mass energy</td>
<td>1.96 TeV</td>
<td>7 (8) TeV</td>
</tr>
<tr>
<td>Initial state</td>
<td>(qq) (≈85%), (gg) (≈15%)</td>
<td>(qq) (≈30%), (gg) (≈70%)</td>
</tr>
</tbody>
</table>

Dramatic differences for single top production:

<table>
<thead>
<tr>
<th>Collider</th>
<th>(s)-channel: (\sigma_{tb})</th>
<th>(t)-channel: (\sigma_{tqb})</th>
<th>(Wt)-channel: (\sigma_{tW})</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tevatron: (p\bar{p}) (1.96 TeV)</td>
<td>1.04 pb</td>
<td>2.26 pb</td>
<td>0.28 pb</td>
</tr>
<tr>
<td>LHC: (pp) (7 TeV)</td>
<td>4.6 pb</td>
<td>64.6 pb</td>
<td>15.7 pb</td>
</tr>
</tbody>
</table>
Decay width of the top quark

\[\Gamma_t = \frac{\Gamma(t \rightarrow Wb)}{\mathcal{B}(t \rightarrow Wb)} \]
Decay width of the top quark

\[\Gamma_t = \frac{\Gamma(t \rightarrow Wb)}{\mathcal{B}(t \rightarrow Wb)} \]

Assume:

\[Wtb \] coupling identical in production & decay

Recent top physics results from DØ

\[\Gamma(t \rightarrow Wb) = \sigma(t\text{-channel}) \frac{\Gamma(t \rightarrow Wb)_{\text{SM}}}{\sigma(t\text{-channel})_{\text{SM}}}. \]

PLB 705, 313 (2011)
DØ 5.4 fb⁻¹

6/6/12

Recent top physics results from DØ
Decay width of the top quark

\[
\Gamma_t = \frac{\Gamma(t \to Wb)}{B(t \to Wb)}
\]

measured in \(tt\) events

Assume:

\(Wtb\) coupling identical in production & decay

Recent top physics results from DØ

\[\frac{\Gamma(t \to Wb)}{\sigma(t\text{-channel})} = \frac{\Gamma(t \to Wb)_{SM}}{\sigma(t\text{-channel})_{SM}}\]

\[DØ, L=5.3 \text{ fb}^{-1}\]

\[\text{Data} \quad \text{tt} \ R=1 \quad \text{tt} \ R=0.5 \quad \text{tt} \ R=0 \quad \text{Background}\]

\[\text{PRD 84, 012008 (2011)}\]

\[\text{PLB 705, 313 (2011)}\]

\[DØ \ 5.4 \text{ fb}^{-1}\]

\[68\% \ C.L. \quad 90\% \ C.L. \quad 95\% \ C.L.\]

\[\text{Measurement} \quad \text{SM}^{[1]} \quad \text{Four generations}^{[2]} \quad \text{Top-flavor}^{[3]} \quad \text{FCNC}^{[4]}\]

Assume:

Wtb coupling identical in production & decay

\[\Gamma_t = \frac{\Gamma(t \rightarrow Wb)}{\beta(t \rightarrow Wb)} \]

\[\Gamma(t \rightarrow Wb) = \sigma(t\text{-channel}) \frac{\Gamma(t \rightarrow Wb)_{SM}}{\sigma(t\text{-channel})_{SM}} \]

Properly correlate $\sigma(t\text{-channel})$, $\beta(t \rightarrow Wb)$ \rightarrow measure Γ_t from LH based on t-channel discriminant
Decay width of the top quark measured in $t\bar{t}$ events

Assume:

Wtb coupling identical in production & decay

Recent top physics results from DØ

World’s most precise (indirect) determination of Γ_t to date

$\Gamma_t = 2.00^{+0.47}_{-0.43}$ GeV

$\tau_t = (3.29^{+0.90}_{-0.63}) \times 10^{-25}$ s

Properly correlate $\sigma(t$-channel), $\mathcal{B}(t \to Wb)$ \rightarrow measure Γ_t from LH based on t-channel discriminant
To extract $|V_{tb}|$, use again t-channel discriminant

Form the LH as before but analyse

$$|V_{tb}|^2 \mathcal{B}(t \to Wb) \sigma(t\text{-channel})_{SM}, |V_{tb}| = 1$$

Form Bayesian posterior density:

PRD 85, 091104 (2012)
To extract $|V_{tb}|$, use again t-channel discriminant

Form the LH as before but analyse

$$|V_{tb}|^2 \mathcal{B}(t \rightarrow Wb) \sigma(t - \text{channel})_{SM}, |V_{tb}| = 1$$

Form Bayesian posterior density:

$$|V_{tb}| > 0.81 \text{ at 95\% C.L.}$$

No assumption that $t \rightarrow Wb$ exclusively or on relative t to s channel rates

PRD 85, 091104 (2012)
- Study the \(V-A \) nature of the \(Wtb \) coupling
- Deviations from SM would indicate new physics

\[
\begin{align*}
 f_- &= 30.1\% \text{ (NLO)} \\
 f_+ &= 0.04\% \text{ (NLO)} \\
 f_0 &= 69.8\% \text{ (NLO)}
\end{align*}
\]
Study the \textit{V-A} nature of the Wtb coupling

- Deviations from SM would indicate new physics

\begin{align*}
 f_- &= 30.1\% \,(\text{NLO}) \\
 f_+ &= 0.04\% \,(\text{NLO}) \\
 f_0 &= 69.8\% \,(\text{NLO})
\end{align*}
Dilepton & l+jets comb’d

Define channel-dependent templates in $\cos\theta^*$ (leptonic W) and $|\cos\theta^*|$ (hadronic W) + LH fit

Simultaneous 2-D fit results:

$$f_0 = 0.669 \pm 0.078 \text{ (stat.)} \pm 0.065 \text{ (syst.)}$$

$$f_+ = 0.023 \pm 0.041 \text{ (stat.)} \pm 0.034 \text{ (syst.)}$$

PRD 83, 032009 (2011)
Dilepton & I+jets comb’d

Define channel-dependent templates in \(\cos \theta^* \) (leptonic W) and \(|\cos \theta^*|\) (hadronic W) + LH fit

Simultaneous 2-D fit results:

\[
\begin{align*}
 f_0 &= 0.669 \pm 0.078 \text{ (stat.)} \pm 0.065 \text{ (syst.)} \\
 f_+ &= 0.023 \pm 0.041 \text{ (stat.)} \pm 0.034 \text{ (syst.)}
\end{align*}
\]

\(\chi^2/N_{\text{DOF}} = 8.82/4, \text{ p-value} = 6\% \)

Tevatron combination:

- CDF + DØ combination
 - \(L = 2.7 - 5.4 \text{ fb}^{-1} \)
- 68\% and 95\% C.L. contours
- Combined result
- SM value
- CDF I+jets
- CDF dilepton
- DØ

PRD 83, 032009 (2011)

PRD 85, 091104 (2012)
Anomalous Wtb couplings (Wtb AC)

- Most general, lowest-dim, CP-conserving Wtb vertex

$$\mathcal{L} = \frac{g}{\sqrt{2}} b\gamma^{\mu}V_{tb}(f_{V}^{L}P_{L} + f_{V}^{R}P_{R})tW_{\mu}^{--}$$

$$\quad - \frac{g}{\sqrt{2}} b\frac{i\sigma^{\mu\nu}q_{\nu}V_{tb}}{M_{W}}(f_{T}^{L}P_{L} + f_{T}^{R}P_{R})tW_{\mu}^{--} + h.c.$$
Anomalous Wtb couplings (Wtb AC)

- **Most general, lowest-dim, CP-conserving Wtb vertex**

\[
\mathcal{L} = \frac{g}{\sqrt{2}} b \gamma^\mu V_{tb} (f_L^V P_L + f_R^V P_R) t W^- \mu \\
- \frac{g}{\sqrt{2}} b i \sigma^{\mu\nu} q_{\nu} V_{tb} \frac{f_T^L P_L + f_T^R P_R}{M_W} t W^- \mu + h.c.
\]

- **Extract Wtb AC from single top production using:**
 - shapes of kinematic distributions
 - event rate (overall, s-channel vs t-channel)

- **Few assumptions:**
 - Single top quarks produced exclusively via a W boson
 - $|V_{td}|^2 + |V_{ts}|^2 \ll |V_{tb}|^2$

[Underlined couplings are 0 in SM!]

Recent top physics results from DØ

arXiv:1110.4592 [hep-ex], PLB acc’d
Anomalous Wtb couplings (Wtb AC)

- Most general, lowest-dim, CP-conserving Wtb vertex

$$\mathcal{L} = \frac{g}{\sqrt{2}} \overline{b} \gamma^\mu V_{tb} (f_V^L P_L + f_V^R P_R) tW_\mu^-$$

$$- \frac{g}{\sqrt{2}} \overline{b} \sigma^{\mu\nu} q_\nu V_{tb} \frac{1}{M_W} (f_T^L P_L + f_T^R P_R) tW_\mu^- + h.c.$$

- Extract Wtb AC from single top production using:
 - shapes of kinematic distributions
 - event rate (overall, s-channel vs t-channel)

- Few assumptions:
 - Single top quarks produced exclusively via a W boson
 - $|V_{td}|^2 + |V_{ts}|^2 \ll |V_{tb}|^2$

- Bayesian NN discriminant in $3 \ N_{jet} \times 2 \ N_{tag}$ bins:
 - Dedicated training for each signal model
 - Allow one of $\{f_V^R, f_T^L, f_T^R\}!=0$, and $f_V^L = 1$ for consistency!
Obtained limits:

Limits on Wtb AC from single top production

arXiv:1110.4592 [hep-ex], PLB acc’d
Wtb AC will alter:
- single top production
 (see previous slides)

arXiv:1204.2332 [hep-ex], PLB acc’d
Wtb AC will alter:
- single top production (see previous slides)
- fractions of W bosons in the 3 helicity states

arXiv:1204.2332 [hep-ex], PLB acc’d
Wtb AC will alter:
- single top production (see previous slides)
- fractions of W bosons in the 3 helicity states

Assume:
- Single top production through Wtb vertex exclusively
- $|V_{td}|^2 + |V_{ts}|^2 \ll |V_{tb}|^2$

arXiv:1204.2332 [hep-ex], PLB acc’d
Wtb AC from single top + W helicity

- **Wtb AC will alter:**
 - single top production (see previous slides)
 - fractions of W bosons in the 3 helicity states

- **Assume:**
 - Single top production through Wtb vertex exclusively
 - $|V_{td}|^2 + |V_{ts}|^2 \ll |V_{tb}|^2$

- **Use the LH from W helicity meas’t as prior for single top**
 - Compute LH over all possible analysis channels
 - Remove overlap between selections

Recent top physics results from DØ

arXiv:1204.2332 [hep-ex], PLB acc’d
Recent top physics results from DØ

arXiv:1204.2332 [hep-ex], PLB acc’d
Wtb AC from single top + W helicity

Combination of single top + W helicity

| Scenario | only $|f_V^R|^2$ | only $|f_T^L|^2$ | combination $|f_T^R|^2$ |
|----------|-----------------|-----------------|-----------------|
| W helicity | 0.62 | 0.14 | 0.18 |
| single top | 0.89 | 0.07 | 0.18 |
| combination | 0.30 | 0.05 | 0.12 |

Significant improvement!
• Invariance under Lorentz transformation is a fundamental property of the SM
 - Thoroughly tested in the leptonic sector and for first generation, some tests for second generation, b-system
Invariance under Lorentz transformation is a fundamental property of the SM

- Thoroughly tested in the leptonic sector and for first generation, some tests for second generation, b-system
- Quantify Lorentz invariance violation (LIV) in the top sector using in the SM Extension formalism:

\[|\mathcal{M}_{\text{SME}}|^2 = PF\bar{F} + (\delta P)F\bar{F} + P(\delta F)\bar{F} + PF(\delta \bar{F}) \]

\(P\) @ prod’n vertex \(F\) @ decay vertex \(\delta\) Dependence on SM extension coefficients

[D. Colladay and V.A. Kostelecky, Phys. Rev. D 58, 116002 (1998)]
[V.A. Kostelecky, Phys. Rev. D 69, 105009 (2004)]

- Parametrisate LIV \(f_{\text{SME}}(t)\) in terms of coefficients \(C_{\mu\nu}\):

\[f_{\text{SME}}(t) = C_{\mu\nu} R^\mu_\alpha(t) R^\nu_\beta(t) A^{\alpha\beta} \]

arXiv:1203.6106 [hep-ex], PRL acc’d
Lorentz invariance violation

- **Invariance under Lorentz transformation is a fundamental property of the SM**
 - Thoroughly tested in the leptonic sector and for first generation, some tests for second generation, b-system
 - **Quantify Lorentz invariance violation (LIV) in the top sector using in the SM Extension formalism:**
 \[
 |\mathcal{M}_{\text{SME}}|^2 = PF\bar{F} + (\delta P)F\bar{F} + P(\delta F)\bar{F} + PF(\delta \bar{F})
 \]
 \[P \text{ @ prod’n vertex} \quad F \text{ @ decay vertex} \quad \delta \text{ Dependence on SM extension coefficients}\]

 [D. Colladay and V.A. Kostelecky, Phys. Rev. D 58, 116002 (1998)]
 [V.A. Kostelecky, Phys. Rev. D 69, 105009 (2004)]

- **Parametrisate LIV** \(f_{\text{SME}}(t)\) in terms of coefficients \(C_{\mu\nu}\):
 - \(f_{\text{SME}}(t) = C_{\mu\nu} R_\alpha^\mu(t) R_\beta^\nu(t) A^{\alpha\beta}\)
 - Non-zero \(C_{\mu\nu}\) will result in time dependent \(tt\) production due to the rotation of the Earth!

\textit{arXiv:1203.6106 [hep-ex], PRL acc’d}
Lorentz invariance violation

- The period is 1 or $\frac{1}{2}$ siderial day
 - 1 Solar day
 ≈ 0.997 siderial day
 - Use time stamp to check periodicity!

$\sigma(t) \approx \sigma_{ave} \left[1 + f_{SME}(t) \right]$
The period is 1 or ½ siderial day
- 1 Solar day
 ≈ 0.997 siderial day
- Use time stamp to check periodicity!

\[R_i \equiv \frac{1}{f_S} \left(\frac{N_i/N_{\text{tot}}}{\mathcal{L}_i/\mathcal{L}_{\text{int}}} - 1 \right) \]
Theoretical predictions (Tevatron-specific!):
- At LO, completely symmetric
- At higher orders, interference terms influence t and tbar production asymmetrically, e.g.:
Theoretical predictions (Tevatron-specific!):
- At LO, completely symmetric
- At higher orders, interference terms influence t and $t\bar{t}$ production asymmetrically, e.g.:

- New physics contributions to enhance asymmetry?
 - Massive axial vector gluons
 - Massive vector gluons
 - Z', W'
 - Technicolour
 - ?
Colour Charge Asymmetry (A_{FB})

- **Theoretical predictions (Tevatron-specific!):**
 - At LO, completely symmetric
 - At higher orders, interference terms influence t and $t\bar{t}$ production asymmetrically, e.g.:
 - New physics contributions to enhance asymmetry?
 - Massive axial vector gluons
 - Massive vector gluons
 - Z', W'
 - Technicolour
 - ?

Recent top physics results from DØ
Colour Charge Asymmetry (A_{FB})

- Form observable:
 \[A_{fb} = \frac{N_{\Delta y > 0} - N_{\Delta y < 0}}{N_{\Delta y > 0} + N_{\Delta y < 0}} \]

- Use b-tagged events
- Use kinematic fitter for reco

Recent top physics results from DØ

PRD 84, 112005 (2011)
Colour Charge Asymmetry (A_{FB})

- Form observable:

 $$A_{fb} = \frac{N_{\Delta y>0} - N_{\Delta y<0}}{N_{\Delta y>0} + N_{\Delta y<0}}$$

- Use b-tagged events
- Use kinematic fitter for reco

$\Delta y = y_t - y_{\bar{t}}$

tt rest frame

PRD 84, 112005 (2011)
Colour Charge Asymmetry (A_{FB})

- Form observable:

$$A_{fb} = \frac{N_{\Delta y > 0} - N_{\Delta y < 0}}{N_{\Delta y > 0} + N_{\Delta y < 0}}$$

- Use b-tagged events
- Use kinematic fitter for reco

Recent top physics results from DØ

$\Delta y = y_t - y_{\bar{t}}$

tt rest frame

PRD 84, 112005 (2011)
Colour Charge Asymmetry (A_{FB})

- Form observable:
 \[
 A_{fb} = \frac{N_{\Delta y>0} - N_{\Delta y<0}}{N_{\Delta y>0} + N_{\Delta y<0}}
 \]

- Use b-tagged events
- Use kinematic fitter for reco

Recent top physics results from DØ:

- Raw result (not unfolded), after background subtraction:
 \[
 A_{FB} = 9.2 \pm 3.7\%
 \]

- MC@NLO prediction:
 \[
 2.4 \pm 0.7
 \]

PRD 84, 112005 (2011)

~2σ
Asymmetry would be enhanced:
- For high m_{tt} for an s-channel resonance
- For high $|\Delta y|$ for a t-channel anomaly

<table>
<thead>
<tr>
<th>Subsample</th>
<th>Data</th>
<th>MC@NLO</th>
</tr>
</thead>
<tbody>
<tr>
<td>$m_{tt} < 450$ GeV</td>
<td>7.8 ± 4.8</td>
<td>1.3 ± 0.6</td>
</tr>
<tr>
<td>$m_{tt} > 450$ GeV</td>
<td>11.5 ± 6.0</td>
<td>4.3 ± 1.3</td>
</tr>
<tr>
<td>$</td>
<td>\Delta y</td>
<td>< 1.0$</td>
</tr>
<tr>
<td>$</td>
<td>\Delta y</td>
<td>> 1.0$</td>
</tr>
</tbody>
</table>

Less than 2σ throughout

PRD 84, 112005 (2011)
Any A_{FB} at generator level will be reduced at reconstruction level due to
- Limited detector acceptance
- Limited resolution on Δy (≈ 0.7)

PRD 84, 112005 (2011)
Colour Charge Asymmetry (A_{FB})

- Any A_{FB} at generator level will be reduced at reconstruction level due to:
 - Limited detector acceptance
 - Limited resolution on Δy (≈ 0.7)

- Unfold Δy to generator level
 - Bin migrations particularly relevant close to $\Delta y = 0$
 - Use sufficiently fine binned, regularised unfolding
 - Correct for possible biases with ensemble tests
 - (Cross-check with coarse-binned unfolding consistent)

<table>
<thead>
<tr>
<th>A_{FB} (%)</th>
<th>Reconstruction level</th>
<th>Production level</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data</td>
<td>9.2 ± 3.7</td>
<td>19.6 ± 6.5</td>
</tr>
<tr>
<td>MC@NLO</td>
<td>2.4 ± 0.7</td>
<td>5.0 ± 0.1</td>
</tr>
</tbody>
</table>

PRD 84, 112005 (2011)
Recent top physics results from DØ

There is a new measurement of A_{FB} by CDF (CDF Note 10807, 8.7 fb$^{-1}$) → comparison plots are not available yet
Migrations around $\Delta y=0$ are tiny if lepton-based observables are used
- \rightarrow define forward, backward events via $q_{\ell} y_{\ell} < 0$, $q_{\ell} y_{\ell} > 0$
Migrations around Δy are tiny if lepton-based observables are used

- → define forward, backward events via $q_\ell y_\ell < 0$, $q_\ell y_\ell > 0$

Table

<table>
<thead>
<tr>
<th></th>
<th>Reconstruction level</th>
<th>Production level</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data</td>
<td>14.2 ± 3.8</td>
<td>15.2 ± 4.0</td>
</tr>
<tr>
<td>MC@NLO</td>
<td>0.8 ± 0.6</td>
<td>2.1 ± 0.1</td>
</tr>
</tbody>
</table>
We are looking ahead to more exciting measurements from the Tevatron!
Recent top physics results from DØ
Obtained limits:

Using events orthogonal to W helicity measurement ONLY

DØ, 5.4 fb$^{-1}$

- 68% C.L.
- 90% C.L.
- 95% C.L.

- Best-fit value
- SM value

Single top only

[arXiv:1110.4592]
Wtb AC from single top + W helicity

- Wtb AC will alter:
 - single top production
 (see previous slides)
 - fractions of W bosons
 in the 3 helicity states:

[arXiv:1204.2332]
Wtb AC from single top + W helicity

- **Wtb AC will alter:**
 - single top production (see previous slides)
 - fractions of W bosons in the 3 helicity states

- **Assume:**
 - Single top production through Wtb vertex exclusively
 - \(|V_{td}|^2 + |V_{ts}|^2 \ll |V_{tb}|^2\)

- **Use the LH from W helicity meas’t as prior for single top**
 - Compute LH over all possible analysis channels
 - Remove overlap between selections

arXiv:1204.2332 [hep-ex], PLB acc’d
The period is 1 or $\frac{1}{2}$ siderial day
- 1 Solar day ≈ 0.997 siderial day
- Use time stamp to check periodicity!

\[\sigma(t) \approx \sigma_{\text{ave}} [1 + f_{\text{SME}}(t)] \]

<table>
<thead>
<tr>
<th>Coefficient</th>
<th>Value ± Stat. ± Sys.</th>
<th>95% C.L. Interval</th>
</tr>
</thead>
<tbody>
<tr>
<td>$(c_Q)_{XX33}$</td>
<td>$-0.12 \pm 0.11 \pm 0.02$</td>
<td>$[-0.34, +0.11]$</td>
</tr>
<tr>
<td>$(c_Q)_{YY33}$</td>
<td>$0.12 \pm 0.11 \pm 0.02$</td>
<td>$[-0.11, +0.34]$</td>
</tr>
<tr>
<td>$(c_Q)_{XY33}$</td>
<td>$-0.04 \pm 0.11 \pm 0.01$</td>
<td>$[-0.26, +0.18]$</td>
</tr>
<tr>
<td>$(c_Q)_{XZ33}$</td>
<td>$0.15 \pm 0.08 \pm 0.02$</td>
<td>$[-0.01, +0.31]$</td>
</tr>
<tr>
<td>$(c_Q)_{YZ33}$</td>
<td>$-0.03 \pm 0.08 \pm 0.01$</td>
<td>$[-0.19, +0.12]$</td>
</tr>
</tbody>
</table>

TABLE III: Limits on SME coefficients at the 95% C.L., assuming $(c_U)_{\mu\nu} \equiv 0.$

\[\sigma(t) \approx \sigma_{\text{ave}} [1 + f_{\text{SME}}(t)] \]

<table>
<thead>
<tr>
<th>Coefficient</th>
<th>Value ± Stat. ± Sys.</th>
<th>95% C.L. Interval</th>
</tr>
</thead>
<tbody>
<tr>
<td>$(c_U)_{XX33}$</td>
<td>$0.10 \pm 0.09 \pm 0.02$</td>
<td>$[-0.08, +0.27]$</td>
</tr>
<tr>
<td>$(c_U)_{YY33}$</td>
<td>$-0.10 \pm 0.09 \pm 0.02$</td>
<td>$[-0.27, +0.08]$</td>
</tr>
<tr>
<td>$(c_U)_{XY33}$</td>
<td>$0.04 \pm 0.09 \pm 0.01$</td>
<td>$[-0.14, +0.22]$</td>
</tr>
<tr>
<td>$(c_U)_{XZ33}$</td>
<td>$-0.14 \pm 0.07 \pm 0.02$</td>
<td>$[-0.28, +0.01]$</td>
</tr>
<tr>
<td>$(c_U)_{YZ33}$</td>
<td>$0.01 \pm 0.07 \pm <0.01$</td>
<td>$[-0.13, +0.14]$</td>
</tr>
</tbody>
</table>

TABLE IV: Limits on SME coefficients at the 95% C.L., assuming $(c_Q)_{\mu\nu} \equiv 0.$

[arXiv:1203.6106]
Strong charge asymmetry (D0)

- Strong Colour charge asymmetry (D0, 5.4 fb\(^{-1}\))

\[A = (9.2 \pm 3.6^{+0.8}_{-0.9})\% \iff A(MC@NLO) = (2.4 \pm 0.3^{+0.7}_{-0.5})\% \]
Recent top physics results from DØ

<table>
<thead>
<tr>
<th></th>
<th>$l^+ \geq 4$ jets</th>
<th>$e^+ \geq 4$ jets</th>
<th>$\mu^+ \geq 4$ jets</th>
<th>$l+4$ jets</th>
<th>$l+\geq 5$ jets</th>
</tr>
</thead>
<tbody>
<tr>
<td>Raw N_F</td>
<td>849</td>
<td>455</td>
<td>394</td>
<td>717</td>
<td>132</td>
</tr>
<tr>
<td>Raw N_B</td>
<td>732</td>
<td>397</td>
<td>335</td>
<td>597</td>
<td>135</td>
</tr>
<tr>
<td>$N_{t\bar{t}}$</td>
<td>1126 ± 39</td>
<td>622 ± 28</td>
<td>502 ± 28</td>
<td>902 ± 36</td>
<td>218 ± 16</td>
</tr>
<tr>
<td>N_{W+jets}</td>
<td>376 ± 39</td>
<td>173 ± 28</td>
<td>219 ± 27</td>
<td>346 ± 36</td>
<td>35 ± 16</td>
</tr>
<tr>
<td>N_{MJ}</td>
<td>79 ± 5</td>
<td>56 ± 3</td>
<td>8 ± 2</td>
<td>66 ± 4</td>
<td>13 ± 2</td>
</tr>
<tr>
<td>A_{FB}(%)</td>
<td>9.2 ± 3.7</td>
<td>8.9 ± 5.0</td>
<td>9.1 ± 5.8</td>
<td>12.2 ± 4.3</td>
<td>-3.0 ± 7.9</td>
</tr>
<tr>
<td>MC@NLO A_{FB}(%)</td>
<td>2.4 ± 0.7</td>
<td>2.4 ± 0.7</td>
<td>2.5 ± 0.9</td>
<td>3.9 ± 0.8</td>
<td>-2.9 ± 1.1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>$l^+ \geq 4$ jets</th>
<th>$e^+ \geq 4$ jets</th>
<th>$\mu^+ \geq 4$ jets</th>
<th>$l+4$ jets</th>
<th>$l+\geq 5$ jets</th>
</tr>
</thead>
<tbody>
<tr>
<td>Raw N_F^l</td>
<td>867</td>
<td>485</td>
<td>382</td>
<td>730</td>
<td>137</td>
</tr>
<tr>
<td>Raw N_B^l</td>
<td>665</td>
<td>367</td>
<td>298</td>
<td>546</td>
<td>119</td>
</tr>
<tr>
<td>$N_{t\bar{t}}$</td>
<td>1096 ± 39</td>
<td>622 ± 28</td>
<td>474 ± 27</td>
<td>881 ± 36</td>
<td>211 ± 16</td>
</tr>
<tr>
<td>N_{W+jets}</td>
<td>356 ± 39</td>
<td>173 ± 28</td>
<td>198 ± 27</td>
<td>323 ± 36</td>
<td>31 ± 16</td>
</tr>
<tr>
<td>N_{MJ}</td>
<td>79 ± 5</td>
<td>56 ± 3</td>
<td>8 ± 2</td>
<td>66 ± 4</td>
<td>14 ± 2</td>
</tr>
<tr>
<td>A_{FB}^l(%)</td>
<td>14.2 ± 3.8</td>
<td>16.5 ± 4.9</td>
<td>9.8 ± 5.9</td>
<td>15.9 ± 4.3</td>
<td>7.0 ± 8.0</td>
</tr>
<tr>
<td>MC@NLO A_{FB}^l(%)</td>
<td>0.8 ± 0.6</td>
<td>0.7 ± 0.6</td>
<td>1.0 ± 0.8</td>
<td>2.1 ± 0.6</td>
<td>-3.8 ± 1.2</td>
</tr>
</tbody>
</table>
Template method, 4.7 fb$^{-1}$ (DØ):
- m_{top} free parameter \rightarrow dilepton events are kinematically underconstrained
- Use the so-called neutrino-weighting algorithm:
 - Postulate eta-distributions of neutrinos from MC
 - Calculate weight distribution vs. m_{top}
 - Use 1$^\text{st}$ and 2$^\text{nd}$ moment of this distribution to form templates
- Apply in-situ JES calibration from $l+j$ets channel:
 - 1.013 \pm 0.008(stat)
- Caveat:
 - k_{JES} can be final state-dependent, so we derive a dedicated response correction
- Final result:

\[m_t = 174.0 \pm 2.4(\text{stat}) \pm 1.4(\text{syst}) \text{ GeV} \]

Total uncertainty below 1 GeV for the first time!!!
Tevatron combined values (GeV/c²)

<table>
<thead>
<tr>
<th>Source</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>m_t</td>
<td>173.18</td>
</tr>
<tr>
<td>iJES</td>
<td>0.39</td>
</tr>
<tr>
<td>aJES</td>
<td>0.09</td>
</tr>
<tr>
<td>bJES</td>
<td>0.15</td>
</tr>
<tr>
<td>cJES</td>
<td>0.05</td>
</tr>
<tr>
<td>dJES</td>
<td>0.20</td>
</tr>
<tr>
<td>rJES</td>
<td>0.12</td>
</tr>
<tr>
<td>Lepton p_T</td>
<td>0.10</td>
</tr>
<tr>
<td>Signal</td>
<td>0.51</td>
</tr>
<tr>
<td>Detector Modeling</td>
<td>0.10</td>
</tr>
<tr>
<td>UN/MI</td>
<td>0.00</td>
</tr>
<tr>
<td>Background from MC</td>
<td>0.14</td>
</tr>
<tr>
<td>Background from Data</td>
<td>0.11</td>
</tr>
<tr>
<td>Method</td>
<td>0.09</td>
</tr>
<tr>
<td>MHI</td>
<td>0.08</td>
</tr>
<tr>
<td>Systematics</td>
<td>0.75</td>
</tr>
<tr>
<td>Statistics</td>
<td>0.56</td>
</tr>
<tr>
<td>Total</td>
<td>0.94</td>
</tr>
</tbody>
</table>

In-situ JES calibration $\sim \frac{1}{\sqrt{N}}$

Size of calibration samples $\sim \frac{1}{\sqrt{N}}$

Various signal modeling uncert. $\sim \sqrt{\text{brain effort}}$

Relative uncertainty: 0.54%

Expect this limit to be improved...
- CPT is essential for a locally Lorentz-invariant QFT
 - $m_{\text{particle}} \neq m_{\text{antiparticle}} \Rightarrow$ CPT violated!
- Top is the only quark where this test is possible:
- DØ measures directly and independently

\[\Delta m = m_t - m_{\bar{t}} = 0.8 \pm 1.8 \, \text{(stat)} \pm 0.5 \, \text{(syst)} \, \text{GeV} \]
\[\Delta m = \frac{m_t + m_{\bar{t}}}{2} \equiv 172.5 \, \text{GeV} \]
\[\Delta m = -1.95 \pm 1.11 \, \text{(stat)} \pm 0.59 \, \text{(syst)} \, \text{GeV} \quad (8.7 \, \text{fb}^{-1}) \]
Top-antitop spin correlations

- Decay products carry information about spin of tt system

\[\tau_t = \left(3.3^{+1.3}_{-0.9} \right) \times 10^{-25} \text{ s} \]

- In this form possible only at the Tevatron:
 - High qq fraction (LHC: \(\sim\)10%)
 - Production at threshold dominates

- Correlation strength (frame dependent):

\[C = \frac{N_{\uparrow \uparrow} + N_{\downarrow \downarrow} - N_{\downarrow \uparrow} - N_{\uparrow \downarrow}}{N_{\uparrow \uparrow} + N_{\downarrow \downarrow} + N_{\downarrow \uparrow} + N_{\uparrow \downarrow}} \]

- Analyse it using angular info:

\[\frac{1}{\sigma} \frac{d^2\sigma}{d\cos\theta_1 d\cos\theta_2} = \frac{1}{4} \left(1 - C \cos\theta_1 \cos\theta_2 \right) \]

(for dilepton channel case)
How can we adopt the superior matrix element* (ME) technique for the spin correlation measurement?

- Melnikov and Schulze (PLB 700, 17 (2011)):

\[
R(x) = \frac{P_{t\bar{t}}(x, H=1)}{P_{t\bar{t}}(x, H=0) + P_{t\bar{t}}(x, H=1)}
\]

- Construct templates in R

- Observable:
 - Fraction of events with spin corr.:
 \[
f = \frac{N_{t\bar{t}}(w./ spin \ correlation)}{N_{t\bar{t}}(all)}
\]
 - Translates into \(C \rightarrow f \ast C_{SM} \)
 - i.e. SM pred’n is \(f = 1 \)

* I will discuss the ME technique in detail in the context of \(m_{top} \) meas’t

Here: it gives probability \(P(x, H) \) that a given event came from the process described by the ME, given observed kinematics \(x \) and hypothesis \(H \)
Spin correlations w. matrix element

- Take ME from Mahlon & Parke (PLB 411, 173 (1997)):
 \[
 \sum \left| (M) \right|^2 = \frac{1 + H g_s^4}{2} F \overline{F} \left(2 - \beta^2 s_t^2 \right) - H \frac{g_s^4}{9} F \overline{F} \Delta
 \]
 - H=1: correlated spins
 - H=0: uncorrelated spins

- Perform measurement:
 - Dilepton channel
 - mc@nlo generator
 - dataset as 2 slides ago

- Use binned LH fit with nuisance parameters

- We obtain:
 - \(f = 0.74 \pm 0.41 \) (stat+syst)
 - \(f > 0.14 \) @ 95% CL
 - \(f=0 \) excluded at 97.7% CL (99.6% exp.)
 - 30% more sensitivity!
 - But still statistically dominated (0.27)
Spin correlations w. matrix element

- Straight forward to extend the lepton+jets channel:
 - Same ME, mc@nlo as generator
 - Split in 4 and 4+ jet bins
 - Require two b-tags to reduce combinatorics (+ purity 90%)
 - Regard the other two highest p_T jets as light jets
 - \rightarrow four permutations

- Combine with dilepton result:
 - $f = 0.85 \pm 0.29$ (stat+syst)
 - $f < 0.34$ @ 95% CL
 - $f < 0.05$ @ 99.7% CL
 - $f = 0$ @ 3.1 SD !!!

 - First evidence for non-vanishing spin correlations!
Spin correlations Tevatron

\[\bar{t}t \text{ spin correlations } C_{\text{beam}} \]

<table>
<thead>
<tr>
<th>Experiment</th>
<th>Data</th>
<th>Template</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>CDF, 2.8fb(^{-1})</td>
<td>(dilepton template)</td>
<td>0.32(^{+0.55})(^{-0.78})</td>
<td></td>
</tr>
<tr>
<td>DØ, 5.4fb(^{-1})</td>
<td>(dilepton template)</td>
<td>0.50(\pm0.45)</td>
<td></td>
</tr>
<tr>
<td>DØ, 5.4fb(^{-1})</td>
<td>(dilepton ME)</td>
<td>0.57(\pm0.33)</td>
<td></td>
</tr>
<tr>
<td>CDF, 5.3fb(^{-1})</td>
<td>(l+jets template)</td>
<td>0.72(\pm0.69)</td>
<td></td>
</tr>
<tr>
<td>DØ, 5.3fb(^{-1})</td>
<td>(l+jets ME)</td>
<td>(0.89\pm0.33)</td>
<td>(\text{preliminary})</td>
</tr>
<tr>
<td>DØ combination, 5.4fb(^{-1})</td>
<td>(dilepton + l+jets ME)</td>
<td>(0.66\pm0.23)</td>
<td>(\text{preliminary})</td>
</tr>
</tbody>
</table>
Use colour-connections as selection tool
- \(H \rightarrow b\bar{b} \): colour singlet,
- \(g \rightarrow b\bar{b} \): colour octet
- \(tt \) events provide clean samples of \(W \) bosons (colour-singlet) and b-jets (colour-octet)

Fraction of \(W \) in singlet configuration

\[
\begin{align*}
S_{\text{Singlet}} &= 0.56 \pm 0.42 \\
S_{\text{Singlet}} &= 1 \text{ (SM)}
\end{align*}
\]

[arXiv:1101.0648]
The CDF and DØ detectors

<table>
<thead>
<tr>
<th></th>
<th>CDF</th>
<th>DØ</th>
</tr>
</thead>
<tbody>
<tr>
<td>EM calorimeter</td>
<td>14%/√E + 1%</td>
<td>22%/√E + 4%</td>
</tr>
<tr>
<td>Hadronic calorimeter</td>
<td>70%/√E + 5%</td>
<td>68%/√E + 5%</td>
</tr>
</tbody>
</table>

Silicon vertex detector
Tracking chamber
Solenoid
EM calorimeter
Hadron calorimeter
Muon system

CDF

DØ

Interaction point
24 Feb. 1995:
- Simultaneous PRL submission by CDF and DØ

CDF (67 pb\(^{-1}\)):
- \(\sigma = 6.8^{+3.6}_{-2.4}\) pb,
- observed 19 events, expected 6.9 bkg
 - bkg-only hypothesis rejected at 4.8\(\sigma\)
- \(m_{\text{top}} = 176\pm13\) GeV

D0 (50 pb\(^{-1}\)):
- \(\sigma = 6.4\pm2.2\) pb,
- observed 17 events, expected 3.8 bkg
 - \(\rightarrow\) bkg-only hypothesis rejected at 4.6\(\sigma\)
- \(m_{\text{top}} = 199\pm30\) GeV
24 Feb. 1995:
- Simultaneous PRL submission by CDF and DØ

CDF (67 pb\(^{-1}\)):
- \(\sigma = 6.8^{+3.6}_{-2.4}\) pb,
- observed 19 events, expected 6.9 bkg
 - bkg-only hypothesis rejected at 4.8\(\sigma\)
- \(m_{\text{top}} = 176\pm13\) GeV

DØ (50 pb\(^{-1}\)):
- \(\sigma = 6.4\pm2.2\) pb,
- observed 17 events, expected 3.8 bkg
 - \(\rightarrow\) bkg-only hypothesis rejected at 4.6\(\sigma\)
- \(m_{\text{top}} = 199\pm30\) GeV
- **Tevatron** has shown a great performance in FY 2010!
- We keep enlarging our calibration samples
 - Better handles on experimental uncertainties:
 - e.g. Jet Energy Scale (JES), Jet Energy Resolution, etc.

Measurements of Top Quark Properties at the Tevatron

Delivered: 10.5 fb^{-1}
Recorded: 9.5 fb^{-1}
Data taking eff.: $>90\%$
In the SM:
- $|V_{tb}| = 0.9990-0.9992$ @ 95% C.L. assuming 3 CKM generations
- Characterise tt final states by top decays!

Top Pair Branching Fractions

- "alljets" 46%
- $\tau+$jets 15%
- $\mu+$jets 15%
- $e+$jets 15%

Dilepton
(BR~5%, low bckg)

Lepton+jets
(BR~30%, moderate bckg)

All-hadronic
(BR~46%, huge bckg)
Typical ttbar preselection

<table>
<thead>
<tr>
<th></th>
<th>Dilepton</th>
<th>Lepton+jets</th>
<th>All-hadronic</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 high-(p_T) leptons</td>
<td>1 high-(p_T) lepton (>20 GeV)</td>
<td>No leptons</td>
<td></td>
</tr>
<tr>
<td>Missing E(_T)</td>
<td>Missing E(_T) (>40 GeV)</td>
<td>No missing E(_T)</td>
<td></td>
</tr>
<tr>
<td>2 jets</td>
<td>4 jets (> 20 GeV)</td>
<td>6 jets</td>
<td></td>
</tr>
<tr>
<td>≥ 0 b-tags</td>
<td>≥ 1 b-tag</td>
<td>≥ 1 b-tag</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th></th>
<th>Space/Background (S/B):</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dilepton</td>
<td></td>
<td>Lepton+jets</td>
</tr>
<tr>
<td>(BR~5%, low bckg)</td>
<td></td>
<td>(BR~30%, moderate bckg)</td>
</tr>
<tr>
<td>All-hadronic</td>
<td></td>
<td>(BR~46%, huge bckg)</td>
</tr>
</tbody>
</table>

Diagram:

- **Dilepton** (BR~5%, low bckg)
- **Lepton+jets** (BR~30%, moderate bckg)
- **All-hadronic** (BR~46%, huge bckg)
We are interested in **parton-level quantities for our top measurements**

- Map the energies of reco-level jets to particle jets (D0) / partons (CDF)
- This is referred to as a Jet Energy Scale (JES) corr’n
- With the current size of samples:
 - $s(JES)/JES \sim 1.5\%$ (D0)
 - $s(JES)/JES \sim 3\%$ (CDF)

And many more:
- Lepton ID, p_T scale