Fourth generation searches at ATLAS

Dennis Wendland (Humboldt-Universität zu Berlin, Germany) On behalf of the ATLAS Collaboration

In the following, four analyses with searches for heavy quarks of a 4th generation are presented. The analysed data (1 fb⁻¹) were taken with the ATLAS detector [1] at the LHC at $\sqrt{s} = 7$ TeV. All analyses assume QCD pair-production of these Dirac fermions as a simple extension of the three generations Standard Model (SM), where the up-type quark is noted as t' and the down-type quark as b'.

4th generation quarks could play an interesting role in electroweak symmetry breaking [2]. A SM with four generations has also the property to generate gauge coupling unification at a scale of order $10^{15} - 10^{16}$ GeV [3]. There are also discussions in the literature if a fourth generation of quarks could play a central role in baryogenesis [4].

In the presented analyses, events are selected passing single electron or muon triggers. Electrons are selected with a transverse energy of $E_T > 25$ GeV, tight quality selection criteria, calorimeter isolation, and must be within $|\eta| < 2.47$ ($\eta = -\ln \tan \theta/2$), excluding $1.37 < |\eta| < 1.52$. Muons are selected with a transverse momentum $P_T > 20$ GeV, $|\eta| < 2.5$, isolation and a veto on cosmic muons. Muons overlapping with jets are removed. Jets are reconstructed with an anti- k_T algorithm and are required to have $P_T > 25$ GeV (unless otherwise stated) and $|\eta| < 2.5$. Jets overlapping with electrons are removed. H_T is defined as the scalar sum of jets and leptons P_T . The dilepton analyses apply cuts on the invariant mass m_{inv} of the leptons $(ee/\mu\mu)$ of $m_{inv} > 15$ GeV and $m_{inv} \notin [81, 101]$ GeV. $m_T = \sqrt{2E_T^{Miss}P_T^\ell \left(1 - \cos\left(\Delta\Phi\left(E_T^{Miss}, P_T^\ell\right)\right)\right)}$ describes the transverse mass of lepton ℓ and neutrino in the single lepton analyses.

In [5] b' quarks are searched for in single lepton final states $(b' \to tW)$, branching ratio BR=100%), where the events are required to have at least six jets, missing transverse energy $E_T^{Miss} > 35$ GeV and $m_T > 25$ GeV (e events), $E_T^{Miss} > 20$ GeV and $E_T^{Miss} + m_T > 60$ GeV (μ events) and high- P_T W decays into two jets are identified. The signal is extracted by a binned maximum-likelihood fit of nine bins in (N_W, N_{Jets}) , where $N_W = 0, 1, \ge 2$ describes the number of reconstructed W bosons and $N_{Jets} = 6, 7, \ge 8$ the number of jets. No excess is found and a limit of $m_{b'} >$ 480 GeV (Fig. 1) is set.

In [6] b' quarks are searched for in same-sign dilepton final states ($b' \rightarrow tW$, BR=100%). The events are required to have at least two jets ($P_T > 20$ GeV), $H_T > 350$ GeV and $E_T^{Miss} > 40$ GeV. The signal is extracted by a single-bin counting experiment. No excess is observed and a limit of $m_{b'} > 450$ GeV is set.

In [7] t' quarks are searched for in single lepton final states, $(t' \rightarrow bW, BR=100\%)$ where the events are required to have at least three jets (one with $P_T > 60$ GeV), at least one *b*-jet, $E_T^{Miss} + m_T > 60$ GeV, $E_T^{Miss} > 35$ GeV (*e* events) and $E_T^{Miss} > 20$ GeV (μ events). The reconstructed t' mass m_{reco} is used as discriminant in the signal extraction. No excess is found and a limit of $m_{t'} > 404$ GeV is set.

In [8] heavy 4th generation quarks Q (benchmark model: t') are searched for in opposite-sign dilepton final states $(Q \to qW)$, where the events are required to have at least two jets, $H_T > 130$ GeV ($e\mu$ events) and $E_T^{Miss} > 60$ GeV ($ee/\mu\mu$ events). The signal is extracted by a fit of m_{coll} , which is the reconstructed heavy quark mass assuming the neutrinos from $Q \to qW \to q\ell\nu$ are approximately collinear to the charged leptons. No significant excess over expected background is observed and a limit of $m_Q > 350$ GeV is set.

Figure 1: Left: Discriminant. Right: Limit on b' mass in single lepton final states [5].

References

- [1] ATLAS Collaboration, 2008 JINST 3 S08003
- [2] B. Holdom, JHEP 0608 (2006) 076
- [3] P. Hung, Phys. Rev. Lett. 80 (1998) 3000–3003
- [4] W.-S. Hou, Chin. J. Phys. 47 (2009) 134
- [5] ATLAS Collaboration, Phys. Rev. Lett. 109 (2012) 032001
- [6] ATLAS Collaboration, JHEP 1204 (2012) 069
- [7] ATLAS Collaboration, Phys. Rev. Lett. 108 (2012) 261802.
- [8] ATLAS Collaboration, Phys. Rev. D86 (2012) 012007