The LHCb Upgrade
Silvia Borghi on behalf of the LHCb Collaboration

Motivation

- The flavour sector offers a very rich programme to search for physics beyond the Standard Model, a complementary way to the direct particle searches carried out at ATLAS and CMS.
- Recent LHCb results have shown the potential of flavour Physics at LHC and the excellent performance of the detector.
- LHCb can exploit the full range of B hadrons, including unique NP prospects in B decays.
- A broad charm physics programme is carried out at LHCb.
- LHCb thanks to its forward coverage geometry complies a complementary pseudo-rapidity range to the one of ATLAS and CMS.
- LHCb upgrade would allow to fully exploit flavour physics potential and extend the programme to be a general purpose detector for the forward region.

Data taking prospect

- Collect 50 fb⁻¹
- Increase annual yield
- Leptonic channels: >10
- Hadronic channels: >20
- Reach experimental sensitivities for many observables comparable or better than theoretical uncertainties
- Physics programme beyond beauty and charm:
 - Lepton flavour violation (Majorana neutrino, LFV in B decays)
 - Electroweak physics (sin2θW, Mw)
 - Exotic searches (chiral valleys, ..)
 - QCD (central exclusive production, ..)

Tracking

- Reduce straw coverage
 - a) fiber tracker
 - b) larger silicon tracker
- 40 MHz
 - Full detector readout
- 4.5 kHz to storage

Upgrade

- Timepix
- 20kHz

Physics Prospects at LHCb Upgrade

- Measurement of the CP-violating phase \(\phi_s \) in \(B \) decays
 - Phase I: observe NP if \(\phi_s \) is larger than 3\(\sigma \)
 - Upgrade: beyond SM precision measurement
- Rare penguin decay topologies sensitive to NP: charmless hadronic B decays
 - Phase I: direct CP violation in \(B \) and \(\Delta m \), time dependent CPV in \(B \to K \bar{K} \)
 - Upgrade: precision time dependent CP violation in penguin dominated \(B \to K \bar{K} \), \(B \to \phi \phi \)
- Measurement of CKM angle \(\gamma \) using different ways
 - Phase I: precision to few degrees
 - Upgrade: precision better than 1 degree

Rare decays

- \(B_s^0 \to \mu^+\mu^- \)
 - Phase I: search for new physics in \(B_s \to \mu^+\mu^- \)
 - Upgrade: evaluation of BR(\(B_s \to \mu^+\mu^- \)) and the correlation between \(B_s \to \mu^+\mu^- \) and \(B \to \mu^+\mu^- \) to distinguish the theory predictions
- \(B_s^0 \to \mu^+\mu^- \)
 - Phase I: measure \(\Delta m \) and other observables
 - Upgrade: precise full angular analysis to study further observables (transverse asymmetries) sensitive to NP
- \(D^0 \to \mu^+\mu^- \)
 - Current limit 10\(^{10} \) larger than SM prediction
- Radiative decays: \(B \to \ell
\nu \ell' \to \ell
\nu \ell' \)
- Study of the photon polarisation

Sensitivity to various flavour observables

<table>
<thead>
<tr>
<th>Type</th>
<th>Observable</th>
<th>Current precision</th>
<th>LHCb</th>
<th>Upgrade</th>
<th>Theory</th>
<th>Uncertainty</th>
</tr>
</thead>
<tbody>
<tr>
<td>B (\ell)-mixing</td>
<td>(\bar{B}_s \to \ell \bar{\mu} \to \ell \bar{\nu})</td>
<td>10(^{10})</td>
<td>10(^{10})</td>
<td>10(^{10})</td>
<td>10(^{10})</td>
<td>10(^{10})</td>
</tr>
<tr>
<td>G-parity</td>
<td>(\bar{B}_s \to \ell \bar{\mu} \to \ell \bar{\nu})</td>
<td>10(^{10})</td>
<td>10(^{10})</td>
<td>10(^{10})</td>
<td>10(^{10})</td>
<td>10(^{10})</td>
</tr>
<tr>
<td>Right-handed currents</td>
<td>(\mu^+ \mu^- \to \ell \tilde{\nu})</td>
<td>10(^{10})</td>
<td>10(^{10})</td>
<td>10(^{10})</td>
<td>10(^{10})</td>
<td>10(^{10})</td>
</tr>
<tr>
<td>Electron pseudoproduction</td>
<td>(\bar{B}_s \to \ell \bar{\mu} \to \ell \bar{\nu})</td>
<td>10(^{10})</td>
<td>10(^{10})</td>
<td>10(^{10})</td>
<td>10(^{10})</td>
<td>10(^{10})</td>
</tr>
<tr>
<td>Right-handed currents</td>
<td>(\mu^+ \mu^- \to \ell \tilde{\nu})</td>
<td>10(^{10})</td>
<td>10(^{10})</td>
<td>10(^{10})</td>
<td>10(^{10})</td>
<td>10(^{10})</td>
</tr>
</tbody>
</table>

Mixing and CPV search in the charm sector

- Measurements of mixing parameters with several decays (WS, CP eigenstates, 3-body decays)
 - Phase I: measurement of mixing at \(c > 5 \sigma \)
 - Upgrade: precision better than \(10^5 \) \(\sigma \)
- Search of direct and indirect CP violation
 - Phase I: precision of \(0.5 \times 10^{-6} \)
 - Upgrade: precision of \(0.1 \times 10^{-6} \)

LHC schedule

- LHC startup, \(\sqrt{s} = 900 \) GeV
 - \(\sqrt{s} \) = 7 TeV, \(L = 5 \times 10^{33} \) cm\(^{-2}\)\(\text{s}^{-1}\), bunch spacing 50 ns
 - Go to design energy, nominal luminosity
 - \(\sqrt{s} \) = 13-14 TeV, \(L = 4 \times 10^{33} \) cm\(^{-2}\)\(\text{s}^{-1}\), bunch spacing 25 ns
- Injector and LHC Phase-1 upgrade to full design luminosity
 - \(\sqrt{s} \) = 14 TeV, \(L = 1.2 \times 10^{34} \) cm\(^{-2}\)\(\text{s}^{-1}\), bunch spacing 25 ns
- HL-LHC Phase-2 upgrade, IR, crab cavities
 - \(\sqrt{s} \) = 14 TeV, \(L = 5 \times 10^{34} \) cm\(^{-2}\)\(\text{s}^{-1}\), luminosity levelling

VEO upgrade

- Requirements
 - To deal with high data rates \(\geq 12 \) Gbps/asic
 - High radiation level of \(\sim 370 \) Mrad or \(8 \times 10^{20} \) m\(^2\)\(\text{sr}\)\(\text{cm}^{-2}\)
- Pixel detector
 - VELOPIX based on Tinsel chip
 - 55 \(\mu \)m \(\times \) 55 \(\mu \)m pixel size, 256 \(\times \) 256 matrix
- Alternative option based on strips
 - Similar to existing detector: R\&D geometry
 - Increased number of strips, smaller pitch and strip length
 - R\&D programme
 - Module structure (X\(\mu \))
 - Sensor options: Planar Si, Diamond, 3D
 - RF-foil of vacuum box

RICH

- New photon detector
- Replace all the front-end electronics and DAQ network

Calorimeter-Muon

- Remove ML, M0L, F0 (new photomultiplier FE electronics)

Upgrades

- Requirements
 - To deal with high data rates \(\geq 12 \) Gbps/asic
 - High radiation level of \(\sim 370 \) Mrad or \(8 \times 10^{20} \) m\(^2\)\(\text{sr}\)\(\text{cm}^{-2}\)
- Pixel detector
 - VELOPIX based on Tinsel chip
 - 55 \(\mu \)m \(\times \) 55 \(\mu \)m pixel size, 256 \(\times \) 256 matrix
- Alternative option based on strips
 - Similar to existing detector: R\&D geometry
 - Increased number of strips, smaller pitch and strip length
 - R\&D programme
 - Module structure (X\(\mu \))
 - Sensor options: Planar Si, Diamond, 3D
 - RF-foil of vacuum box