Results from particle identification in pp collisions measured with ALICE at the LHC

Antonio Ortiz Velasquez
(on behalf of ALICE Collaboration)

Lund University, Department of Physics, Div. of Particle Physics.
The plan of the talk is to show results on particle identification (light flavour) in proton-proton collisions.

- Description of ALICE experiment.
- Particle Identification in ALICE.
- Charged pions, (anti)protons and kaons at low-p_t. Prospects for high-p_t.
- Neutral pion production.
- Strange (K^0_s, Λ) and multi-strange (Ξ, Ω) particle production.
- Light vector meson production.
- Light nuclei and anti-nuclei production.
- Outlook.
Light charged hadrons ($\pi^\pm, K^\pm, p, \text{anti-} p$): $100 \text{ MeV} < p < 5 \text{ GeV}$ (several 10 GeV)
dE/dx in silicon (ITS) and gas (TPC) + time-of-flight (TOF) + Cherenkov (HMPID)

Invariant mass and decay topologies ($K_s^0, \Lambda, \Omega^\pm, \Xi^\pm$, open charm, resonances, ...)
TPC+ITS+TOF

Leptons (e, μ), photons, π^0, η.
electrons TRD: $p > 1 \text{ GeV}$, muons: $p > 4 \text{ GeV}$ (light vector mesons), π^0 in PHOS, EMCAL: $1 < p < 80 \text{ GeV}$
Low p_t p, K and π spectra, pp at $\sqrt{s}=0.9$ TeV

Results from different analyses

ITS standalone

TPC

TOF

Low p_t p, K and π spectra, pp at $\sqrt{s}=7$ TeV

Important test of pQCD and NLO calculations.

Important tool to constrain the fragmentation functions in the non-perturbative domain.

With the TPC, the separation of p, K, π can be done on statistical basis in the dE/dx relativistic rise ($\beta\gamma \sim 3.6-1000$).
Preliminary results for pions at high-p_t

See talk of Paul Kuijer
Test pQCD, probe PDF and FF at low x and low z values.
Constrain the gluon to pion fragmentation: at LHC energies, ~75% of pions are produced from gluon fragmentation.

Measurement via the two-photon decay channel.

- PHOS (Photon Spectrometer)
- ITS+TPC (Photon Conversion Method)

At 2.76 and 7 TeV, most NLO calculations overestimate the cross sections, better agreement at 0.9 TeV.
pp, $\sqrt{s}=0.9$ TeV

Ratios from integrated yields extracted from Lévy fits.

pp, $\sqrt{s}=0.9$ TeV.

<table>
<thead>
<tr>
<th>Particles</th>
<th>Charged decay</th>
<th>B.R. (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mesons K^0_S</td>
<td>$K^0_S \rightarrow \pi^+ + \pi^-$</td>
<td>69.2</td>
</tr>
<tr>
<td>ϕ (ss)</td>
<td>$\phi \rightarrow K^+ + K^-$</td>
<td>49.2</td>
</tr>
<tr>
<td>Baryons Λ (u/d/s) and $\bar{\Lambda}$ (u/d/s)</td>
<td>$\Lambda \rightarrow p + \pi^-$ and $\bar{\Lambda} \rightarrow \bar{p} + \pi^+$</td>
<td>63.9</td>
</tr>
<tr>
<td>Ξ^- (dss) and Ξ^+ (dss)</td>
<td>$\Xi^- \rightarrow \Lambda + \pi^-$ and $\Xi^+ \rightarrow \bar{\Lambda} + \pi^+$</td>
<td>99.9</td>
</tr>
</tbody>
</table>

Strange particle production

$pp, \sqrt{s}=0.9$ TeV.

Multi-strange baryon production

pp, $\sqrt{s}=7$ TeV.

BR

- $\Xi^- \rightarrow \Lambda^0 + \pi^- \rightarrow p^+ + \pi^- + \pi^-$: 99.9%
- $\bar{\Xi}^+ \rightarrow \bar{\Lambda}^0 + \pi^+ \rightarrow \bar{p}^- + \pi^+ + \pi^+$: 67.8%
- $\Omega^- \rightarrow \Lambda^0 + K^- \rightarrow p^+ + \pi^- + K^-$
- $\bar{\Omega}^+ \rightarrow \bar{\Lambda}^0 + K^+ \rightarrow \bar{p}^- + \pi^+ + K^+$

Multi-strange baryon production

Studying the possible saturation of the s-quark production with respect to non-strange quark production ...
Mass dependence of mean p_t

STAR: Central collisions 0-10%
Measurement in the dimuon decay channel
(2.5 < y < 4, 1 < p_T < 5 GeV/c),

<table>
<thead>
<tr>
<th></th>
<th>σ_φ (mb)</th>
<th>σ_ω (mb)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALICE μμ measurement</td>
<td>0.940 ± 0.084 ± 0.076</td>
<td>5.28 ± 0.54 ± 0.49</td>
</tr>
<tr>
<td>PYTHIA/Perugia-0</td>
<td>0.50</td>
<td>5.60</td>
</tr>
<tr>
<td>PYTHIA/Perugia-11</td>
<td>0.62</td>
<td>7.81</td>
</tr>
<tr>
<td>PYTHIA/ATLAS-CSC</td>
<td>0.91</td>
<td>6.50</td>
</tr>
<tr>
<td>PYTHIA/D6T</td>
<td>1.12</td>
<td>9.15</td>
</tr>
<tr>
<td>PHOJET</td>
<td>0.87</td>
<td>6.89</td>
</tr>
</tbody>
</table>

pp at √s = 7 TeV

Light vector meson production

The identification is done using dE/dx in the TPC.

The good statistics in pp @ 7 TeV (~380 M events) gives a nice sample of light nuclei and anti-nuclei.

The measurements allow one to study the production mechanisms.
• Several measurements on particle identification using different techniques, results at 0.9, 2.76 and 7 TeV shown.
• Transverse momentum spectra for protons, anti-protons, charged kaons and pions have been measured in a wide range of p_t, we expect to reach $p_t=20$ GeV/c very soon.
• Neutral pion spectra show disagreements with NLO calculations, especially at 7 TeV.
• Multi-strange baryon production has been measured, the p_t reach of the data to model comparison is the highest ever achieved. Huge differences with MC models were found, even with recent Pythia tunes (e.g. Perugia-2011).
• ALICE is studying light nuclei and anti-nuclei production, final results on deuteron, Tritons, Helium3 and Helium4 soon.
Backup
Longitudinal FF

\(\frac{P(qq)}{P(q)} \), the suppression of diquark-antidiquark pair production in the colour field, compared with quark-antiquark production.

\(\frac{P(s)}{P(u)} \), the suppression of s quark pair production in the field compared with u or d pair production.

\(\frac{P(us)}{P(ud)} \) \(\times \) \(\frac{P(s)}{P(d)} \), the extra suppression of strange diquark production compared with the normal suppression of strange quarks.

\(\frac{1}{3} \frac{P(ud_1)}{P(ud_0)} \), the suppression of spin 1 diquarks compared with spin 0 ones (excluding the factor 3 coming from spin counting).

extra suppression for having a s anti-s pair shared by the B and anti-B of a BM anti-B situation.

extra suppression for having a strange meson M in a BM anti-B configuration.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Perugia 0</th>
<th>Perugia 2011 (All)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MSTP(5)</td>
<td>310</td>
<td>350 — 359</td>
</tr>
<tr>
<td>MSTJ(11)</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>PARJ(1)</td>
<td>0.073</td>
<td>0.087</td>
</tr>
<tr>
<td>PARJ(2)</td>
<td>0.2</td>
<td>0.19</td>
</tr>
<tr>
<td>PARJ(3)</td>
<td>0.94</td>
<td>0.95</td>
</tr>
<tr>
<td>PARJ(4)</td>
<td>0.032</td>
<td>0.043</td>
</tr>
<tr>
<td>PARJ(6)</td>
<td>0.5</td>
<td>1.0</td>
</tr>
<tr>
<td>PARJ(7)</td>
<td>0.5</td>
<td>1.0</td>
</tr>
<tr>
<td>PARJ(11)</td>
<td>0.31</td>
<td>0.35</td>
</tr>
<tr>
<td>PARJ(12)</td>
<td>0.4</td>
<td>0.40</td>
</tr>
<tr>
<td>PARJ(13)</td>
<td>0.54</td>
<td>0.54</td>
</tr>
<tr>
<td>PARJ(21)</td>
<td>0.313</td>
<td>0.33</td>
</tr>
<tr>
<td>PARJ(25)</td>
<td>0.63</td>
<td>0.63</td>
</tr>
<tr>
<td>PARJ(26)</td>
<td>0.12</td>
<td>0.12</td>
</tr>
<tr>
<td>PARJ(41)</td>
<td>0.49</td>
<td>0.35</td>
</tr>
<tr>
<td>PARJ(42)</td>
<td>1.2</td>
<td>0.80</td>
</tr>
<tr>
<td>PARJ(45)</td>
<td>0.5</td>
<td>0.55</td>
</tr>
<tr>
<td>PARJ(46)</td>
<td>1.0</td>
<td>1.0</td>
</tr>
<tr>
<td>PARJ(47)</td>
<td>1.0</td>
<td>1.0</td>
</tr>
</tbody>
</table>