

Search for supersymmetric gauginos and third generation squarks with the ATLAS detector

PLHC 2012, Vancouver

Josh McFayden, on behalf of the ATLAS collaboration

- Searches for supersymmetric gauginos and 3rd generation squarks at the LHC are well motivated by naturalness arguments.
- The exclusion of ~TeV scale first and second generation squarks and gluinos by previous LHC searches makes these searches particularly interesting.

- Searches for supersymmetric gauginos and 3rd generation squarks at the LHC are well motivated by naturalness arguments.
- The exclusion of ~TeV scale first and second generation squarks and gluinos by previous LHC searches makes these searches particularly interesting.
- Several "natural" SUSY scenarios rely on "light" third generation squarks and gauginos.

Weak gaugino search results are interpreted in the following scenarios:

- Simplified models for direct gaugino production:
 - $\tilde{\chi}_1^{\pm}, \, \tilde{\chi}_2^0$ are assumed to be Wino-like.
 - Assuming BR($\tilde{\chi}_1^{\pm} \rightarrow \tilde{l}\nu, \tilde{\nu}l$)=50%,50% and BR($\tilde{\chi}_2^0 \rightarrow \tilde{l}^{\pm}l^{\mp}$)=1.
 - s-channel production mode:
 - Phenomenological MSSM:
 - Neutralino/chargino mass eigenstates are mainly dependent on the SU(2), U(1) and higgsino mass parameters.
 - Scenarios with light sleptons increase the number of leptons in final state.
 - Chosen parameters:
 - ▶ M₁ = 100 GeV
 - $tan\beta = 6$
 - m_A = 500 GeV

- Search for chargino and neutralino production in the 3-lepton final state with 2.06 fb⁻¹.
- Next-to-lightest neutralino can decay
 - via sleptons and off-shell Zs (non-resonant final state)
 - via on-shell Zs.
- Two signal regions:
 - **3 leptons, Ermiss > 50 GeV, Same flavour opposite sign (SFOS) lepton pair**

Z-enriched signal region:

 SFOS pair in the Z peak (m_{ll} within 10 GeV of the nominal Z mass) **Z-depleted** signal region:

 SFOS pair Z-veto (m_{ll} within 10 GeV of the nominal Z mass)

b-jet veto

- Dominant backgrounds
 - **Irreducible background**, 3 real leptons WZ/γ^* , ZZ/γ^* , $t\bar{t}+V$ estimated from MC.
 - **Reducible background** from fake leptons Estimated using DD matrix method.
 - 2 real leptons and 1 fake lepton tt, single top (Wt), WW, Z/γ^* .
 - 1 real lepton and 2 fake leptons W, single top (s-channel, t-channel).

- Generally good agreement is observed between data and SM expectation is observed in both the validation and signal regions.
- Systematic uncertainties:
 - Reducible backgrounds: 29%
 - Largely coming from object misidentification uncertainties
 - Irreducible backgrounds: 17%
 - Dominated by uncertainty on acceptance due to PDFs.
 - **Signal**: 10-15%
 - From renormalisation scale, factorisation scale, α_s and PDF variations.

Selection	VR1	VR2	$\mathbf{SR1}$	SR2
$t\bar{t}W^{(*)}/Z^{(*)}$	$1.4{\pm}1.1$	$0.7{\pm}0.6$	$0.4{\pm}0.3$	$2.7{\pm}2.1$
$ZZ^{(*)}$	$6.7{\pm}1.5$	$0.03{\pm}0.04$	$0.7{\pm}0.2$	$3.4{\pm}0.8$
$WZ^{(*)}$	$61{\pm}11$	$0.4{\pm}0.2$	11 ± 2	$58{\pm}11$
Reducible Bkg.	$56{\pm}35$	14 ± 9	14 ± 4	$7.5{\pm}3.9$
Total Bkg.	$125{\pm}37$	15 ± 9	26 ± 5	$72{\pm}12$
Data	122	12	32	95

arXiv:1204.5638, accepted by PRL

- Exclusion limits at 95% confidence M_2 [GeV] level are set using the CL_S prescription
- Interpretation in MSSM scenario with M₁=100 GeV
 - M₂ < 200 GeV excluded for $|\mu| < 150 \text{ GeV}.$
 - $|\mu| < 350 \text{ GeV}$ excluded for $150 < M_2 < 230 \text{ GeV}.$
- Interpretation in simplified models
- terpretation in simplified models Limits are set in the $m(\tilde{\chi}^{\pm}) m(\tilde{\chi}^{0})$ plane.
 - $m(\tilde{\chi}^0) < 170 \text{ GeV}$ excluded for $70 < m(\tilde{\chi}^{\pm}) < 300 \text{ GeV}.$

Josh McFayden - PLHC 2012

3rd Generation Searches

- Supersymmetry can "naturally" solve the hierarchy problem provided third generation squarks are light.
- Stop and sbottom production:
 - Gluino mediated
 - Accessible if gluino is light enough.
 - Very rich final states.
 - Direct pair production
 - Significantly lower cross section.
 - More standard model-like final states.
- Searches are presented in the following scenarios:
 - Direct sbottom pair
 - Direct stop pair in GMSB
 - Light stop

▶ 8

Gluino mediated stop/sbottom

3rd Generation Searches persymmetry can "naturally" solve the hiera

- Supersymmetry can "naturally" solve the hierarchy problem provided third generation squarks are light.
- Stop and sbottom production:
 - Gluino mediated
 - Accessible if gluino is light enough.
 - Very rich final states.
 - Direct pair production
 - Significantly lower cross section.
 - More standard model-like final states.
- Searches are presented in the following scenarios:
 - Direct sbottom pair
 - Direct stop pair in GMSB
 - Light stop

▶ 9

Gluino mediated stop/sbottom 4

New

5 fb⁻¹

The Of Sheffield.

Direct sbottom | Analysis & results

250

200

150

100

50

0

100

150

200

250

300

- Search for direct sbottom production in the 0-lepton channel with **2.05 fb**⁻¹.
- Events are selected with:
 - ET^{miss} > 130 GeV
 - Exactly 2 b-jets ($p_T > 130, 50 \text{ GeV}$)
 - Contransverse mass, mcT cuts of 100, 150 and 200 GeV define the signal regions.
- Good agreement between data and SM expectation.
- Exclusion limits at 95% confidence level are set in the $m(\tilde{b}) - m(\tilde{\chi}^0)$ plane:
 - $m(\tilde{b}) < 390 \text{ GeV}$ excluded for $m(\tilde{\chi}^0) < 60 \text{ GeV}.$

Phys. Rev. Lett. 108, 181802 (2012)

Josh McFayden - PLHC 2012

350

400

m_∼ [GeV

- Search for direct stop pair production in GMSB scenario with 2.05 fb⁻¹.
- To enhance the signal sensitivity the selection is as follows:
 - 2 jets (1 b-tagged)
 - Large E_Tmiss
 - **OSSF** lepton pair in Z window m_z ± 5 GeV
- Signal regions

- **E**T^{miss} > **50 GeV** large mass splittings
- ET^{miss} > 80 GeV small mass splittings
- Background estimation
 - Semi-data driven estimation using **Top** and Z/γ^* +jets control regions.
 - Data-driven matrix method estimation of W+jets and multijets events with fake leptons.
 - ATLAS-CONF-2012-036, submitted to PLB

$E_{\rm T}^{\rm miss}$ [GeV]
--------------------------	------

- Interpreted in GMSB Natural model:
 - **m**(\tilde{t}) < 310 GeV excluded for 115 < m($\tilde{\chi}^0$) < 230 GeV
 - m(t̃) < 330 GeV excluded for</p>
 - $m(\tilde{\chi}^0) = 190 \text{ GeV}$

$ee+\mu\mu$					
Data	86	43			
\mathbf{SM}	$92{\pm}19$	40.7 ± 6.0			
top	$64.3{\pm}7.7$	34.8 ± 5.0			
$Z{+}\mathrm{hf}$	$24{\pm}16$	$4.2{\pm}3.2$			
fake lepton	2.4 ± 0.9	1.1 ± 0.6			
Others	1.2 ± 1.2	0.6 ± 0.6			

- Search for light scalar tops with **2 leptons (e,μ)** with **4.7 fb⁻¹**
- Large mixing can lead to one squark mass eigenstate being significantly lighter than others - can be lighter than the top.
- Expect signature of leptons, E_T^{miss} and at least one jet in the final state.
- Selection:
 - Electron (muon) p_T > 17 (12) GeV
 - Highest lepton p_T < 30 GeV</p>
 - ≥ 1 jet p_T > 25 GeV
 - E_T^{miss} > 20 GeV
 - ► E^{Tmiss} significance > 7.5 √GeV
- Background estimation
 - Semi-data driven estimation using **Top** and Z/γ^* +jets control regions.

ATLAS-CONF-2012-059

► I3

Josh McFayden - PLHC 2012

Light stop | Results & interpretation

- Exclusion limits at 95% confidence level are set in the pMSSM m(stop)-m(neutralino) plane.
- **m**(\tilde{t}) < 130 GeV excluded for $m(\tilde{\chi}^0) < 65$ GeV

Josh McFayden - PLHC 2012

Light stop | Results & interpretation

 Search for gluino-mediated sbottom and stop production in the 3 b-jet final states with 4.7 fb⁻¹.

Basic selection:

- Leading jet p_T > 130 GeV
- **E**_T^{miss} > 160 GeV
- veto events with leptons
- ≥ 3 b-jets p_T > 30 GeV

Common criteria: lepton veto, $p_T^{j_1} > 130$ GeV,
$> 3 b$ -jets $F^{\text{miss}}/m_{\text{max}} > 0.2 \Lambda \phi_{\text{miss}} > 0.4$

		· / / · · · ·		·)·	_
Optimised for:	<i>b</i> -tag OP	m _{eff}	$E_{ m T}^{ m miss}$	N_J	SR
	60%	>500 GeV	>160 GeV	$\geq 4j$	SR4-L
 gluino mediated sbottom 	60%	>700 GeV	>160 GeV	$\geq 4j$	SR4-M
	70%	>900 GeV	>160 GeV	$\geq 4j$	SR4-T
duine mediated stop	70%	>700 GeV	>160 GeV	≥ 6j	SR6-L
	75%	>900 GeV	>200 GeV	≥ 6j	SR6-T

Gluino-mediated stop and sbottom | Results

<i>tī</i> +jets	others	SM	data
(MC)			
33.3 ± 7.9	11.1 ± 4.9	44.4 ± 10.0	45
(32.6 ± 15.4)			
16.4 ± 4.1	6.6 ± 2.9	23.0 ± 5.4	14
(16.1 ± 8.4)			
9.7 ± 2.1	3.8 ± 1.6	13.3 ± 2.6	10
(11.4 ± 5.4)			
10.3 ± 3.3	2.4 ± 1.4	12.7 ± 3.6	12
(10.0 ± 6.2)			
8.3 ± 2.4	1.6 ± 1.1	9.9 ± 2.6	8
(7.9 ± 5.3)			
	$t\bar{t}+jets$ (MC) 33.3 ± 7.9 (32.6 ± 15.4) 16.4 ± 4.1 (16.1 ± 8.4) 9.7 ± 2.1 (11.4 ± 5.4) 10.3 ± 3.3 (10.0 ± 6.2) 8.3 ± 2.4 (7.9 ± 5.3)	$\begin{array}{c c} t\bar{t} + \text{jets} & \text{others} \\ (\text{MC}) & & \\ \hline 33.3 \pm 7.9 & 11.1 \pm 4.9 \\ (32.6 \pm 15.4) & & \\ 16.4 \pm 4.1 & 6.6 \pm 2.9 \\ (16.1 \pm 8.4) & & \\ 9.7 \pm 2.1 & 3.8 \pm 1.6 \\ (11.4 \pm 5.4) & & \\ \hline 10.3 \pm 3.3 & 2.4 \pm 1.4 \\ (10.0 \pm 6.2) & & \\ 8.3 \pm 2.4 & 1.6 \pm 1.1 \\ (7.9 \pm 5.3) & & \\ \end{array}$	$\begin{array}{c ccccc} t\bar{t} + \mathrm{jets} & \mathrm{others} & \mathrm{SM} \\ (\mathrm{MC}) & & & \\ 33.3 \pm 7.9 & 11.1 \pm 4.9 & 44.4 \pm 10.0 \\ (32.6 \pm 15.4) & & & \\ 16.4 \pm 4.1 & 6.6 \pm 2.9 & 23.0 \pm 5.4 \\ (16.1 \pm 8.4) & & & \\ 9.7 \pm 2.1 & 3.8 \pm 1.6 & 13.3 \pm 2.6 \\ (11.4 \pm 5.4) & & & \\ 10.3 \pm 3.3 & 2.4 \pm 1.4 & 12.7 \pm 3.6 \\ (10.0 \pm 6.2) & & & \\ 8.3 \pm 2.4 & 1.6 \pm 1.1 & 9.9 \pm 2.6 \\ (7.9 \pm 5.3) & & & \\ \end{array}$

Background estimation

- Top background
 - Extrapolate from 2 b-tag control region to 3 b-tag signal region.
- QCD multijet background
 - Estimated using a data driven approach.
- Systematic errors
 - Dominated by **b-tagging uncertainties** ~18-23%
 - ATLAS-CONF-2012-058

Gluino-mediated stop and sbottom | Interpretation |

The University

Of Sheffield.

Exclusion limits at 95% C.L. are set in the **gluino-sbottom** and **gluino-stop** mass planes in **pMSSM** scenarios.

Gluino-mediated stop and sbottom | Interpretation II

Exclusion limits at 95% C.L. are set in the gluino-neutralino mass plane for Gbb and Gtt simplified model scenarios.

The University

Of Sheffield.

- Results have been presented here in searches for supersymmetric gauginos and 3rd generation squarks with 2-5 fb⁻¹ of 2011 ATLAS data.
- Previous exclusion limits have been extended in a number of scenarios
 no sign of SUSY yet!
- A number ATLAS of searches are expected to be released with new or updated 5 fb⁻¹ analyses soon!
 - Gaugino searches
 - Direct stop searches
- Looking forward to 8 TeV 2012 data with considerably higher integrated luminosity.

Di-lepton | Analysis outline

- Search for supersymmetric weak gauginos with a final state of the 2-leptons (e,μ) and E^{miss} with 1 fb⁻¹ of ATLAS data.
 - Inclusive:
 - Opposite sign (OS)
 - Same sign (SS)
 - Flavour subtraction (FS)
 - Subtract different flavour (DF) from same flavour (SF)

Signal Region	OS-SR1	OS-SR2	OS-SR3	SS-SR1	SS-SR2	FS-SR1	FS-SR2	FS-SR3
$E_{\mathrm{T}}^{\mathrm{miss}} \; \mathrm{[GeV]}$	250	220	100	100	80	80	80	250
Leading jet $p_{\rm T}$ [GeV]	-	80	100	-	50	-	-	-
Second jet $p_{\rm T}$ [GeV]	-	40	70	-	50	-	-	-
Third jet $p_{\rm T}$ [GeV]	-	40	70	-	-	-	-	-
Fourth jet $p_{\rm T}$ [GeV]	-	-	70	-	-	-	-	-
Number of jets	-	-	-	-	-	-	≥ 2	-
m_{ll} veto [GeV]	-	-	-	-	-	80-100	-	-

$$\begin{split} &\tilde{\chi}^0_i
ightarrow l^\pm
u \tilde{\chi}^\pm_j & \text{Same sign} \ &\tilde{\chi}^\pm_i
ightarrow l^\pm
u \tilde{\chi}^0_j & \text{any flavour} \end{split}$$

- **Background estimation**
 - tt and $Z/\gamma + jets$ backgrounds estimated using MC normalised in control regions.
 - Fakes data driven estimation.
 - **Charge misidentification** probability taken from $Z \rightarrow e^+e^-$ events in MC.
- Generally good agreement is found between data and the SM expectation.
- Dominant systematic uncertainties
 - **Background** Jet energy scale, jet energy resolution, generator and ISR/FSR.
 - **Signal** cross section and jet energy scale.

Di-lepton | Interpretation

 Exclusion limits at 95% confidence level (CL) are set.

Inclusive SS and OS

- Interpretation in $\tilde{\chi}_1^{\pm} \tilde{\chi}_2^0$ direct production gaugino simplified models.
- Visible cross section is corrected for acceptance and efficiency.
 - Acceptances of ~5-15% for low mass region and efficiencies of ~20%.

Flavour subtraction

- Limits are set on S, a measure of the excess in the number of opposite-sign same-flavour events.
- This can be interpreted by setting a limit on \bar{S}_s , the mean contribution to number of events to S from new phenomena.

m _{CT}	Top, W + hf TF (MC)	Z + hf TF (MC)	Others MC + JS	Total SM	Data
0	67 ± 10	23 ± 8	3.6 ± 1.5	94 ± 16	96
	(60 ± 25)	(16 ± 9)		(80 ± 35)	
100	36 ± 10	23 ± 9	3.1 ± 1.6	62 ± 13	56
	(34 ± 16)	(12 ± 7)		(49 ± 25)	
150	12 ± 5	12 ± 6	2.7 ± 0.9	27 ± 8	28
	(13 ± 8)	(8.3 ± 4.7)		(24 ± 13)	
200	3.2 ± 1.6	3.9 ± 3.2	1.0 ± 0.9	8.1 ± 3.5	10
	(4.1 ± 3.4)	(2.8 ± 1.5)		(8.0 ± 4.9)	

Systematic uncertainties

- Background: 21-44%
 - Dominant uncertainties coming from finite statistics in CR and theoretical modelling of tt.
- Signal:
 - Detector effects 35-45%: jet energy scale and b-tagging efficiency uncertainties.

2 b-jet mct | Background estimation

- Semi-leptonic tf 1-lepton control region, transfer factor from CR to SR.
- Z + heavy flavour 2-lepton control region, leptons added to E_T^{miss}.

Direct stop - GMSB | Model

GMSB Natural model -

- See M. Asano et al., JHEP 12, 019 (2010)
- $\checkmark \chi^{0_1}$ is pure higgsino-like and lighter than the stop
- The following parameters are assumed:

$$m_{ ilde{q}_3}=m_{ ilde{u}_3}=-A_t/2; \quad aneta=10$$

First and second generation and gluinos are set to 2 TeV

Stop decay: $\tilde{t}_1 \to b \tilde{\chi}^+$ or $\tilde{t}_1 \to t \tilde{\chi}^0_{1(2)}$ $\tilde{\chi}_1^{\pm} \to \tilde{\chi}_1^0 f f'$ $\tilde{\chi}_1^0 \to Z\tilde{G}$ $\mathcal{B}\left(\tilde{\chi}_{1}^{0} \to Z\tilde{G}\right) = 1 - 0.65 \left[m_{\tilde{\chi}_{1}^{0}} : 100 - 350 \,\text{GeV}\right]$

Experimental signature is largely determined by the nature of the next-to-lightest SUSY particle $(\tilde{\chi}_1^0)$

losh McFayden - PLHC 2012

The University

Of Sheffield.

Stop pair in GMSB | Background estimation

- **Top** Identical to signal region but with reversed mll Z window.
 - Transfer factor from CR to SR is derived from Monte Carlo.
- **Z + Heavy Flavour (HF)** Low ETmiss (<50 GeV)
 - Taken from Monte Carlo, validated in control region.
- **Fake lepton** from W+jets and multijets estimated with datadriven matrix method.

Light stop | Selection & results

Requirement	ee channel	$e\mu$ channel	$\mu\mu$ channel		
Signal Region					
lepton $p_{\rm T}$	> 17 GeV	> 17(12) GeV for $e(\mu)$	> 12 GeV		
highest lepton $p_{\rm T}$	< 30 GeV	< 30 GeV	< 30 GeV		
m_{ll}	> 20 GeV and Z veto	> 20 GeV	> 20 GeV and Z veto		
jet $p_{\rm T}$	≥ 1 jet, $p_{\rm T} > 25$ GeV	≥ 1 jet, $p_{\rm T} > 25$ GeV	≥ 1 jet, $p_{\rm T} > 25$ GeV		
$E_{\mathrm{T}}^{\mathrm{miss}}$	> 20 GeV	> 20 GeV	> 20 GeV		
$E_{\mathrm{T}}^{\mathrm{miss,sig}}$	$> 7.5 \text{ GeV}^{1/2}$	$> 7.5 \text{ GeV}^{1/2}$	$> 7.5 \text{ GeV}^{1/2}$		
	Top C	ontrol Region			
lepton $p_{\rm T}$	> 17 GeV	> 17(12) GeV for $e(\mu)$	> 12 GeV		
highest lepton $p_{\rm T}$	> 30 GeV	> 30 GeV	> 30 GeV		
m_{ll}	> 20 GeV and Z veto	> 20 GeV	> 20 GeV and Z veto		
jet $p_{\rm T}$	≥ 2 (b)jets, $p_{\rm T} > 25$ GeV	≥ 2 (b)jets, $p_{\rm T} > 25$ GeV	≥ 2 (b)jets, $p_{\rm T} > 25$ GeV		
b jet $p_{\rm T}$	$\geq 1 b$ jet, $p_{\rm T} > 25 { m GeV}$	$\geq 1 b$ jet, $p_{\rm T} > 25 {\rm GeV}$	$\geq 1 b$ jet, $p_{\rm T} > 25 { m GeV}$		
$E_{\mathrm{T}}^{\mathrm{miss}}$	> 20 GeV	> 20 GeV	> 20 GeV		
$E_{\mathrm{T}}^{\mathrm{miss,sig}}$	> 7.5 GeV ^{1/2}	$> 7.5 \text{ GeV}^{1/2}$	$> 7.5 \text{ GeV}^{1/2}$		
	Z Co	ontrol Region			
lepton $p_{\rm T}$	> 17 GeV	n/a	> 12 GeV		
highest lepton $p_{\rm T}$	< 30 GeV	n/a	< 30 GeV		
m_{ll}	> 81 GeV and < 101 GeV	n/a	> 81 GeV and < 101 GeV		
jet $p_{\rm T}$	≥ 1 jet, $p_{\rm T} > 25$ GeV	n/a	≥ 1 jet, $p_{\rm T} > 25$ GeV		
$E_{\mathrm{T}}^{\mathrm{miss}}$	> 20 GeV	n/a	> 20 GeV		
$E_{ m T}^{ m miss, sig}$	$> 4.0 \text{ GeV}^{1/2}$	n/a	$> 4.0 \text{ GeV}^{1/2}$		

	ee	еµ	μμ	all
tī	$44 \pm 4 \pm 5$	$139 \pm 7 \pm 22$	$111 \pm 8 \pm 10$	$293 \pm 12 \pm 34$
Z/γ^* +jets	$5 \pm 1 \pm 2$	$23 \pm 2 \pm 8$	$48 \pm 16 \pm 27$	$76 \pm 16 \pm 27$
Single top	$3 \pm 0.5 \pm 1$	$12 \pm 1 \pm 2$	$12 \pm 1 \pm 2$	$28 \pm 2 \pm 5$
W+jets	$3 \pm 3 \pm 3$	$5 \pm 2 \pm 1$	$6 \pm 2 \pm 1$	$13 \pm 3 \pm 3$
Diboson	$4\pm0.4\pm0.5$	$9 \pm 0.7 \pm 2$	$10 \pm 0.7 \pm 1$	$22 \pm 1 \pm 3$
multijet	$2.9^{+3.2}_{-2.9} \pm 2.2$	$2.0 \pm 1.4 \pm 0.3$	$3.0 \pm 2.8 \pm 0.3$	$8.0 \pm 3.7 \pm 2.3$
Total	$61 \pm 6 \pm 6$	$189 \pm 8 \pm 21$	$190 \pm 19 \pm 31$	$440 \pm 21 \pm 43$
Data	48	188	195	431
$\sigma_{ m vis}$ (exp. limit) [fb]	4.9	11.1	16.2	22.0
$\sigma_{ m vis}$ (obs. limit) [fb]	3.3	10.9	16.9	21.0
$m(\tilde{t}, \tilde{\chi}_1^0) = (112, 55) \text{ GeV}$	44.1 ± 4.8	137 ± 8	140 ± 8	322 ± 13
$m(\tilde{t}, \tilde{\chi}_1^0) = (160, 55) \text{ GeV}$	8.8 ± 1.5	31.4 ± 2.7	36.5 ± 2.9	76.6 ± 4.3

Josh McFayden - PLHC 2012

- Dominant background is expected to be:
 - di-leptonic tt
 - **Z**/ γ^* +jets.
- Estimated by extrapolating from a suitable control region (CR) to the signal region (SR).

$$(N_{t\bar{t}})_{\text{SR}} = ((N_{\text{data}})_{\text{CR}} - (N_{\text{non}-t\bar{t},\text{MC}})_{\text{CR}})\frac{(N_{t\bar{t},\text{MC}})_{\text{SR}}}{(N_{t\bar{t},\text{MC}})_{\text{CR}}}$$

- **Top CR** requirement of a b-jet and one extra jet.
- **Z**/ γ *+jets **CR** reverse Z veto.

3 b-jet | Background estimation

SM

 395 ± 115

 590 ± 160

 45 ± 13

data

402

515

46

Top background

- Semi-leptonic top with a W decaying to c and τ that are mis-tagged as b-jets.
- Extrapolate from 2 b-tag control region to 3 b-tag signal region:

$$N_{3b}^{Pred,top} = (N_{2b}^{data} - N_{2b}^{MC,notop}) \times \frac{N_{3b}^{MC,top}}{N_{2b}^{MC,top}} = (N_{2b}^{data} - N_{2b}^{MC,notop}) \times T_f(2b \to 3b)$$

Validated in a **1-lepton validation** region and by a fake b-tag matrix method. CR4-60

QCD multijet background

Estir

timated using a data driven approach.	CR6-75 40 ± 12 10 ± 4 50 ± 15 52
ATLAS Preliminary 10^4 $\int L dt \sim 4.71 \text{ fb}^{-1}, $	10^{4} 10^{4} 10^{4} 10^{4} 10^{4} 10^{3} 10^{2} 1
2 1 2 00 600 800 1000 1200 1400 1600 1800 2000	2 1
m."[GeV]	m _{-"} [GeV]

CR

CR4-70

CR6-70

 $t\bar{t}$ +jets

 329 ± 92

 489 ± 125

 38 ± 11

others

 66 ± 26

 $102 \pm 3\overline{7}$

 7 ± 3

Events / 100 GeV

data / exp

Gluino-mediated stop and sbottom | 1-lepton results

- Previous 2.05 fb⁻¹ 1-lepton gluino mediated stop search.
- Interpretation in pMSSM and simplified model scenarios.

decays.

Offline analysis variable is **boost corrected** m_{CT}.

- Frame is re-boosted in transverse plane to account for any ISR which can smear out the m_{CT} endpoint.
- m_{CT} is low for back-to-back QCD dijets as the small $\cos(\Phi_{12})$ dominates.
- m_{CT} is high for jets boosted in transverse plane.

D.R.Tovey [HEP 0804:034,2008

D.R.Tovey, G.Polesello [HEP 1003:030,2010

Definition: $M_{CT}^2 = (E_{T_1} + E_{T_2})^2 - (\mathbf{p_{T_1}} - \mathbf{p_{T_2}})^2$

Contransverse mass, m_{CT}, is a kinematic variable that can be used to

measure the masses of particles in events with pairs of semi-invisible

- ATLAS has forward-backward symmetric cylindrical geometry.
 - Inner tracker: 2 T magnetic field providing precision tracking of charged particles.
 - Calorimeter systems: Liquid argon or scintillating tiles provide energy measurements.
 - Muon spectrometer: Surrounded by air-core superconducting magnets providing a magnetic field strength varying from 1 to 8 T·m the muon spectrometer provides trigger and high precision tracking capabilities.