Onia production at ATLAS

Takashi Matsushita
on behalf of the ATLAS Collaboration

Kobe University
Takashi.Matsushita@cern.ch

Physics at the LHC 2012
4 - 9 June 2012, Vancouver, BC
ATLAS detector

Inner detector
- $|\eta| < 2.5$, Solenoidal B-field $= 2$ T
- Silicon: pixels, strips
- Transition Radiation Tracker
- $\sigma(p_T)/p_T \sim 3.4 \times 10^{-4} p_T \oplus 0.015$

Muon spectrometer
- precision chambers $|\eta| < 2.7$
- trigger chambers $|\eta| < 2.4$
- Toroidal B-field, average ~ 0.5 T
- $\sigma(p_T)/p_T \sim 10\% p_T$ for 1 TeV track

Dimensions
- length: 44 m
- height: 25 m
- weight: 7000 tons
- $\sim 10^8$ electronic channels

Three level trigger system
- Level 1: hardware trigger with muon and calorimeter information ~ 75 kHz
- Level 2: software trigger to confirm level 1 trigger decision $\sim O(1)$ kHz
- Event Filter: event selection with more complex algorithm $\sim O(100)$ Hz
Data sample

- 2010: peak $\mathcal{L} = 2.1 \times 10^{32} \text{ cm}^{-2}\text{s}^{-1}$
- 2011: peak $\mathcal{L} = 3.7 \times 10^{33} \text{ cm}^{-2}\text{s}^{-1}$
- 2012: peak $\mathcal{L} = 6.7 \times 10^{33} \text{ cm}^{-2}\text{s}^{-1}$

LHC is performing better and better

- 2010: $\int \mathcal{L} dt = 0.045 \text{ fb}^{-1} \sqrt{s} = 7 \text{ TeV}$
- 2011: $\int \mathcal{L} dt = 5.3 \text{ fb}^{-1} \sqrt{s} = 7 \text{ TeV}$
- 2012: $\int \mathcal{L} dt = 3.9 \text{ fb}^{-1} \sqrt{s} = 8 \text{ TeV}$

Plenty of data available
Di-muon triggers for B-physics programme

- ATLAS has a B-physics programme with low p_T dimuon signatures
 - **Onia studies**: $J/\psi \rightarrow \mu\mu, \Upsilon \rightarrow \mu\mu$
 - CP violation/mixing: $B_s \rightarrow J/\psi\phi$
 - Rare B decays: $B_s \rightarrow \mu\mu$

- Trigger on low p_T dimuon essential
 - 2 muons at Level 1 HW trigger
 - Confirmation with SW trigger
 - Performs vertex fit and mass cut

- “2mu4” triggers unprescaled in 2011
 - A large number of events recorded for the B-physics programme

<table>
<thead>
<tr>
<th>Trigger</th>
<th>Mass range</th>
<th># of events</th>
</tr>
</thead>
<tbody>
<tr>
<td>2mu4_Jpsimumu</td>
<td>2.5 – 4.3 GeV</td>
<td>14 M</td>
</tr>
<tr>
<td>2mu4_Upsimumu</td>
<td>8 – 12 GeV</td>
<td>9.1 M</td>
</tr>
<tr>
<td>2mu4_Bmumu</td>
<td>4 – 8.5 GeV</td>
<td>3.7 M</td>
</tr>
</tbody>
</table>

figure and numbers with 2.3 fb$^{-1}$
Muon reconstruction

- **Combined**: Muon Spectrometer and Inner Detector track
- **Tagged**: Inner Detector track matched with Muon Spectrometer segment

Reconstruction efficiency in low-p_T region well described by simulation

PLHC2012 Onia production at ATLAS T. Matsushita (Kobe) 5/16
Quarkonia

Charmonium

- J/ψ and $\psi(2S)$ candidates
- Key signatures of B-meson decays through charmonium states; e.g. $B_{d(s)} \rightarrow J/\psi \; K(\phi)$
- ~ 2.2 millions J/ψ with 240 pb$^{-1}$

Bottomonium

- Three Upsilon states observed in the barrel region
- ~ 74 thousands $\Upsilon(1S)$ with 240 pb$^{-1}$

ATLAS Preliminary

<table>
<thead>
<tr>
<th>\sqrt{s} = 7 TeV</th>
<th>$\int L , dt = 0.24$ fb$^{-1}$</th>
</tr>
</thead>
</table>

$N_{J/\psi} = (2.208 \pm 0.002) \times 10^6$

$m_{J/\psi} = 3.094 \pm 0.003$ GeV

$\sigma_{m_{J/\psi}} = 60 \pm 1$ MeV

$\sqrt{s} = 7$ TeV $\int L \, dt = 0.24$ fb$^{-1}$

Barrel + Barrel

$\sigma(Y_{1S}) = 0.119 \pm 0.001$ GeV

$N(Y_{1S}) = (74.1 \pm 0.5) \times 10^3$
Quarkonium physics

- J/ψ and Υ production at the LHC offers
 - Test of perturbative QCD at new energy regime
 - Higher transverse momentum
 - Wider rapidity range
 - Production mechanism for quarkonium states not fully understood
$J/\psi \rightarrow \mu\mu$

Inclusive cross-section

\[\frac{d^2 \sigma(J/\psi)}{dp_T dy} \cdot Br(J/\psi \rightarrow \mu^+\mu^-) = \frac{N_{\text{corr}}}{\mathcal{L} \cdot \Delta p_T \Delta y} \]

\[N_{\text{corr}} = \Sigma w^{-1} \cdot N_{\text{reco}} \]

Event weight: \[w^{-1} = A \cdot M \cdot \epsilon^2_{\text{trk}} \cdot \epsilon^+_{\mu}(p^+_T, \eta^+) \cdot \epsilon^-_{\mu}(p^-_T, \eta^-) \cdot \epsilon_{\text{trig}} \]

- **Detector Acceptance**: with generator level MC
- **Bin migration correction**: due to finite detector resolution
- **Reconstruction efficiencies**: with tag-and-probe method using data
- **Trigger efficiency**: determined from MC and reweighted to data

- **Result with 2.2 \, pb^{-1}**
- **Example of one rapidity bin (4 in total)**
- **variation due to 5 extreme spin alignment scenarios**
- **Agreement with CMS**
$J/\psi \rightarrow \mu\mu$

Measurement of non-prompt fraction

pseudo-proper time

$$\tau = \frac{L_{xy} \cdot m(J/\psi)}{p_T(J/\psi)}$$

- x-y displacement of J/ψ from PV
- Invariant mass of J/ψ
- p_T of J/ψ

- Prompt J/ψ have \sim zero τ while non-prompt J/ψ have positive τ
- Simultaneous fit to mass and τ
- Good agreement with CDF
- Fraction is p_T dependent
\(J/\psi \rightarrow \mu\mu \)

Measurement of non-prompt/prompt \(J/\psi \) cross-section

Non-prompt \(J/\psi \) cross-section

- Good agreement with prediction by FONLL (Fixed Order Next to Leading Log)

Prompt \(J/\psi \) cross-section

- CEM is not describing shape
- NLO CSM is low but describing shape
- NNLO\(^*\) CSM describe the data better
$\Upsilon \rightarrow \mu\mu$

cross-section

$2 \text{ GeV} < p_T^{\mu\mu} < 4 \text{ GeV}$

$|y^{\mu\mu}| < 1.2$

$N_{\Upsilon(1S)} = 246 \pm 25$

$\chi^2/\text{ndf} = 43.3/52$

$\int L \, dt = 1.13 \text{ pb}^{-1}$

Data 2010

- Fit result
- $\Upsilon(1S)$
- $\Upsilon(2S)$
- $\Upsilon(3S)$
- Background

Result with 1.1 pb^{-1}

- Implementation of NRQCD in Pythia is higher (lower) than data at high (low) p_T

- CSM prediction at NLO underestimates the data. Feed-down from excited states can only account for up to a factor of two increases in predictions. NNLO corrections need to be large, or leaves more room for colour octet contributions.
Observation of $\chi_b(3P)$

- χ_c and χ_b represent spin triplet ($S=1$) P-wave ($L=1$) states of charmonium ($c\bar{c}$) and bottomonium ($b\bar{b}$) spectra.

- The χ represents a triplet of states with $J^{PC} = 0^{++}, 1^{++}, 2^{++}$

- Branching fractions for the radiative decays $\chi_b \rightarrow \Upsilon \gamma$ are large $O(10\%)$

- $\chi_b(1P)$ and $\chi_b(2P)$ already observed

- $\chi_b(3P)$ also predicted below $B\bar{B}$ threshold.

- Search for $\chi_b(3P)$ states in $\chi_b \rightarrow \Upsilon \gamma$ decays has been performed. Photon reconstructed either directly in the calorimeter or through conversion to e^+e^-.

![Image of observed bottomonium radiative decays in ATLAS, $L = 4.4 \text{ fb}^{-1}$]
$\chi_b(3P)$ candidate

- $\mu\mu + \text{unconverted } \gamma$

- $m(\mu\mu\gamma) - m(\mu\mu) + m(\Upsilon(1S)) = 10.54$ GeV
$\chi_b(3P)$ candidate

- $\mu\mu + \text{converted } \gamma$

- $m(\mu\mu\gamma) - m(\mu\mu) + m(\Upsilon(1S)) = 10.54$ GeV
Observation of $\chi_b(3P)$

Unconverted photons

\[m(\chi_b(3P)) = 10.541 \pm 0.011 \text{ (stat.)} \pm 0.030 \text{ (syst.)} \text{ GeV} \]

Converted photons

\[m(\chi_b(3P)) = 10.530 \pm 0.005 \text{ (stat.)} \pm 0.009 \text{ (syst.)} \text{ GeV} \]

These distributions are not corrected for detector efficiencies or acceptances.

• Statistical significance of $> 6 \sigma$ in each channel
• Spin-averaged potential model prediction: 10.525 GeV

\[m_{DØ}(\chi_b(3P)) = 10.551 \pm 0.014 \text{ (stat.)} \pm 0.017 \text{ (syst.)} \text{ GeV} \]
Summary and outlook

- ATLAS has performed measurements of Onia production
 - J/ψ cross-sections
 - agreement with CDF/CMS
 - non-prompt fraction increases as p_T of J/ψ increases
 - Colour Singlet Model at NNLO improves agreement with measured prompt cross-sections compared to NLO
 - Υ cross-sections
 - NRQCD does not describe shape
 - Colour Singlet Model is describing shape but lower than data
 No feed down from higher order states are included
 - Observation of new state $\chi_b(3P)$
 - measured mass agrees well with prediction of 10.525 GeV

- ATLAS has collected a large number of di-muon sample in 2011, many new results will follow
 - Quarkonia
 - J/ψ spin alignment
 - cross-sections and ratio of $\Upsilon(1S,2S,3S)$
 - $\psi(2S)$ cross-sections and ratio to J/ψ
 - Studies of double-quarkonium production
 - Onia $\rightarrow \pi\pi$