

Search for a Light Higgs Boson at ATLAS

Tatsuya Masubuchi University of Tokyo (ICEPP) on behalf of the ATLAS Collaboration

Outline

- Introduction
- Higgs Search Strategy at ATLAS
- Results of Each Channel
- Summary

Introduction and Motivation

- Direct and indirect Higgs boson search
 - ATLAS+CMS excluded the range of $141 < m_H < 476$ GeV in 2011 summer (1.0-2.3fb⁻¹)
 - LEP excluded up to 114.4 GeV
 - The preferred value is 94⁺²⁹-24 GeV, m_H < 152 GeV @ 95% CL from EW global fit
 - → If SM Higgs boson exists, light Higgs boson is preferred!!

Higgs Production and Decay

2012/6/8

Higgs Production and Decay

2012/6/8

Physics at LHC -2012 Vancouver

2012/6/8

- Di-photon trigger (trigger efficiency is 99% w.r.t. offline selection)
- Two isolated photons with $E_{\tau}(\gamma 1) > 40$ GeV, $E_{\tau}(\gamma 2) > 25$ GeV
- Candidate diphoton events are subdivided into 9 orthogonal categories (converted/unconverted, η range, p_{τ_t})
 - \rightarrow Extract better m_{vv} resolution and S/B region

Physics at LHC -2012 Vancouver

m,, [GeV]

<u>н→үү</u>

ATLAS-CONF-2011-161

- Di-photon trigger (trigger efficiency is 99% w.r.t. offline selection)
- Two isolated photons with $E_T(\gamma 1) > 40 \text{ GeV}$, $E_T(\gamma 2) > 25 \text{ GeV}$
- Candidate diphoton events are subdivided into 9 orthogonal categories (converted/unconverted, η range, p_{Tt})
 - \rightarrow Extract better m_{vv} resolution and S/B region

- Robust $m_{\gamma\gamma}$ reconstruction against the pileup
 - ➔ important to measure photon direction
 - Use conversion vertex and calorimetric information for converted photons
 - Use longitudinal information of EM calorimeter for unconverted photons
- Uncertainty on m_{γγ} mass peak (±0.7 GeV)
 2012/6/8 Physics at LHC -2012 Vancouver

Resolution:

Good Medium

Poor

Phys. Rev. Lett. 108 (2012)

 m_{γγ} distribution summed over all categories 95% CL limit on SM Higgs cross section divided by SM expectation

95% CL excluded region : 113-115,134.5-136 GeV Largest significance 2.8σ is observed at 126.5 GeV : (1.5σ with Look-elsewhere-effect for 110-150 GeV)

2012/6/8

$\underbrace{H \rightarrow ZZ^{(*)} \rightarrow 4I}_{Phys.Lett. B710 (2012) 383-402}$

- Clean signature : Require 4 isolated leptons (4e,4µ,2e2µ)
 - low background level : SM ZZ, Z+jets, ttbar
 - Mass resolution : ~1-2% level (low mass region)
 - Event Selection : |m_z-m₁₂|< 15 GeV, m₃₄ selection is optimized depending on m₄₁ to improve signal-to-background ratio (20 < m₃₄ < 115 GeV for m₄₁=130 GeV)

$H \rightarrow ZZ^{(*)} \rightarrow 4I_{Phys.Lett. B710 (2012) 383-402}$

95% CL excluded region Observed : 134-156 GeV Expected : 136-157 GeV

3 observed events

Probability that a background-only experiment is more signal-like than that observed

arXiv:1206.0756 CERN-PH-EP-2012-126

- Most sensitive channel in 120 < m_H < 200 GeV
 - High signal yield but no full mass reconstruction possible due to 2ν
- Signature : dilepton+E_T^{miss} rel +(0,1,2) jets
 - Event selection is optimized for each jet bin to maximize sensitivity (different background composition)
- Background suppression

Selection	Suppression
Two high-p _T isolated lepton	W+jets, QCD
Large missing transverse energy	Z+jets, QCD
jet-bin specific : high p _{II} for 0jet b-jet veto for 1/2 jet, VBF cut for 2jet	Z+jets ttbar, single top
Topological selection (low $\Delta \phi_{\parallel}$, m _{$\parallel)$}	SMWW

2012/6/8

2012/6/8

$\underline{\mathsf{MVA in H} \rightarrow \mathsf{WW} \rightarrow \mathsf{lvlv}}$

- First result using MVA (BDT) in ATLAS Higgs search
 - Preselection : Same object selection, E_T^{miss} , p_T^{II} cut as m_T fit analysis
 - Train signal vs. combined background (WW,WZ,ZZ, ttbar, single top and Z+jets) for 0,1jet separately in each mass point
 - 4 topological variables (m_T , $\Delta \varphi_{\parallel}$, m_{\parallel} , p_T^{\parallel}) are used

$H \rightarrow \tau \tau$ (τ_{lep}τ_{lep}, τ_{lep}τ_{had}, τ_{had}τ_{had})

Physics at LHC -2012 Vancouver

m_H [GeV]

14 ATLAS-CONF-2012-015

WH→lvbb	ZH→Ilbb	ZH→vvbb					
one lepton (e,µ)	two leptons (ee, μμ)	$E_T^{miss} > 120 \text{ GeV}$					
E _T ^{miss} > 25, GeV, m _T > 40 GeV	84 GeV < m _{II} < 99 GeV, E _T ^{miss} < 50 GeV	$p_T^{miss} > 30 \text{ GeV}, \Delta \varphi(E_T^{miss}, p_T^{miss}) < \pi/2, \Delta \varphi(E_t^{miss}, jet) > 1.8$					
Two b-jets (45,25 GeV)							
Categorize events depending on vector boson $p_T (p_{TV})$ or MET (Boost VH Events)							
p _{TV} <50,50 <p<sub>TV<100,100<</p<sub>	<p<sub>TV<200, p_{TV}>200 GeV</p<sub>	120 <e<sub>T^{miss}<160,160<e<sub>T^{miss}<200, E_T^{miss}>200 GeV</e<sub></e<sub>					
$\begin{array}{c} \begin{array}{c} \begin{array}{c} m_{bb} \ distribution \\ \end{array} \\ \begin{array}{c} 20 \\ 18 \\ 18 \\ 16 \\ \end{array} \\ \begin{array}{c} ATLAS \ Preliminary \\ 16 \\ \end{array} \\ \begin{array}{c} L \ dt = 4.6 \ fb^{-1}, \sqrt{s} = 7 \ TeV \\ \end{array} \\ \begin{array}{c} 16 \\ \end{array} \\ \begin{array}{c} ZH \rightarrow V \overline{V} \ b\overline{b} \\ \end{array} \\ \begin{array}{c} 14 \\ \end{array} \\ \begin{array}{c} E_{T}^{miss} > 200 \ GeV \end{array} \end{array}$	in ZH \rightarrow vvbb • Data 2011 • Data 2011 • Signal×5 (m _H =120 GeV) • Top - Z+jets · Wi istr	95% CL Limit combined all channels 4 ATLAS Preliminary $12 \text{ Observed (CLs)}$ $\sqrt{s=7 \text{ TeV}}, \int \text{Ldt} = 4.6-4.7 \text{ fb}^{-1}$ 12 Expected (CLs) $VH(bb), combined10 \pm 1\sigma8 \pm 2\sigma$					
10 8 6 4 2 0 0 50 100 2012/6/8	S/B~0.09 in signal mass window 150 200 250 m_ [GeV] Physics at LHC -20	⁴ ⁴ ⁴ ⁴ ⁴ ⁴ ⁴ ⁴					

 $- \sim 2\sigma$ level excess in local p_0 is observed around 125 GeV in $H \rightarrow \gamma \gamma$ and $H \rightarrow ZZ \rightarrow 4I$

- 8TeV run is going smoothly
 - More statistics (15-20 fb⁻¹) in 2012
- otal Integrated Luminosity [fb $^{-1}$ – ggF x-sec increase by 27% at 125 GeV
 - We have an answer, either discovery or exclusion, in the remaining low mass region this year

2012/6/8

- ~2 σ level excess in local p is of served around 125 GeV in H $\rightarrow \gamma\gamma$ and $H \rightarrow ZZ \rightarrow 4H$
- 8TeV run is going no othly
 - More statist, s (15-20 fb⁻¹) in 2012
 - otal Integrated Luminosity [fb – ggF x-sec increase by 27% at 125 GeV
 - We have an answer, either discovery or exclusion, in the remaining low mass region this year

16

Back up

ATLAS Data Taking in 2011

- Excellent LHC performance in 2011 (far beyond expectation)
- Peak luminosity : 3.7×10³³ cm⁻²s⁻¹
- High luminosity → high pile-up

 Very challenging for trigger, reconstruction of physics object, analysis strategies

18

ATLAS Detector

Excellent performance of ATLAS

- Data-taking efficiency : 93.5%
- High operational fraction of all sub-detectors : >95%

- mass resolution for each category
- observed µ for each category
- z position resolution is ~6mm for converted photon, ~15mm for unconverted photon

σ_{CB}	FWHM	N_{S}	ND	S/B
1.4	3.4	9.1	1763	0.05
1.4	3.3	2.6	235	0.11
1.7	4.0	17.7	6234	0.02
1.6	3.9	4.7	1006	0.04
1.6	3.9	6.0	1318	0.03
1.5	3.6	1.7	184	0.08
2.0	4.7	17.0	7311	0.01
1.9	4.5	4.8	1072	0.03
2.3	5.9	8.5	3366	0.01
1.7	4.1	72.1	22489	0.02
	σ_{CB} 1.4 1.7 1.6 1.6 1.5 2.0 1.9 2.3 1.7	$\sigma_{\rm CB}$ FWHM1.43.41.43.31.74.01.63.91.63.91.53.62.04.71.94.52.35.91.74.1	$\sigma_{\rm CB}$ FWHMNs1.43.49.11.43.32.61.74.017.71.63.94.71.63.96.01.53.61.72.04.717.01.94.54.82.35.98.51.74.172.1	$\sigma_{\rm CB}$ FWHMNsND1.43.49.117631.43.32.62351.74.017.762341.63.94.710061.63.96.013181.53.61.71842.04.717.073111.94.54.810722.35.98.533661.74.172.122489

$\underline{\mathsf{H}}\underline{\mathsf{WW}}\underline{\mathsf{V}$

• $H \rightarrow WW p_0$

W/ZH(→bb)

• Top (low pt category), bottom (high pt category)

