UNIVERSITY OF ALBERTA DEPARTMENT OF PHYSICS

Search for Exotics Physics States Decaying to Leptonic Final states

Roger Moore

Introduction

- Here we will define "exotic" physics as
 - Beyond the Standard Model...but not SUSY!
- This talk will present the results from four recent "exotic" ATLAS search analyses
 - High mass dilepton resonances
 - ATLAS-CONF-2012-007
 - Excited electrons and muons
 - ATLAS-CONF-2012-008
 - Resonant WZ production
 - arXiv:1204:1648, submitted to Phys. Rev. D
 - Heavy neutrinos and right-handed W bosons
 - arXiv: I 203:5420, submitted to Eur. Phys. J. C
- There are many more but no time to cover them!
 - https://twiki.cern.ch/twiki/bin/view/AtlasPublic/ExoticsPublicResults

08 Jun 2012

Dilepton Resonances

- High mass resonances decaying to ee or µµ suggested by several models
 - Sequential Standard Model: Z' with same couplings as Z MWW
 - Grand Unified Symmetry breaking: E6->SU(5) and 2 U(1)
 - Z' formed from mixing gauge fields: couplings not same as Z
 - Randall-Sundrum spin-2 gravitons
 - Probe $0.01 < k/\overline{M}_{\rm Pl} < 0.1$ for narrow resonance
- Important Backgrounds $\overline{M}_{\rm Pl} = M_{\rm Pl}/\sqrt{8\pi}$
 - Z/γ* (Drell-Yan) dominant and irreducible
 - ttbar and diboson (WW,WZ,ZZ) small
 - QCD and W+jets
 - μ channel: b and c quark semi-leptonic decays
 - e channel: mixture of hadronic mis-identification, semi-leptonic heavy quark decay and photon conversion

08 Jun 2012

Event Selection

	e ⁺ e ⁻ Channel	μ ⁺ μ ⁻ Channel
2011 Dataset	4.9 fb ⁻¹	5.0 fb ⁻¹
Trigger	2 e, E⊤≥20 GeV	I μ, p⊤≥22 GeV/c
Trig. Efficiency	99%	85% barrel, 86% EC

- e⁺e⁻ Channel Analysis cuts
 - $\Delta R = \sqrt{\Delta \eta^2 + \Delta \phi^2}$ ▶ 2 e, $E_T \ge 25 \text{GeV}$ and $|\eta| < 2.47$, no charge requirements
 - Shower shape cuts corresponding to a "medium" electron
 - Hit in first active tracker pixel layer: remove γ conversion
 - Lead e isolated $\sum E_T(\Delta R < 0.2) < 7 \text{ GeV}$: remove QCD
- µ⁺µ⁻ Channel Analysis cuts

R. Moore

- ▶ 2 muons, $p_T \ge 25$ GeV/c, opposite sign [trigger out to $|\eta| < 2.4$]
- Quality cuts: matched ID track, 3 hits in all three muon layers
 - 2 layers in strong B field/well aligned regions; µ dropped if barrel+EC hits
- Cosmic removal: $PV_Z < 200$ mm from centre, $|d_0| < 0.2$ mm, beam-line to PV < 1mm
- QCD removal: both muons isolated $\sum p_T(\Delta R < 0.3)/p_T(\mu) < 0.05$

Backgrounds

- ee QCD estimated from data
 - Reverse subset of electron ID
 - Subtract non-QCD using MC
 - Fit function for mee=110-800 GeV/c²
 - Use shape and normalize to observed mee in a control region
- µµ QCD estimation uses a similar approach but with isolation
 - Normalize QCD MC to data where $\sum p_T(\Delta R < 0.3)/p_T(\mu) > 0.1$
- MC samples generated at NLO (diboson LO)
 - Corrected to NNLO (diboson NLO) via mass dependent K-factor

R. Moore

- QCD (and Z') corrected by: QCD K-factor = $\frac{\sigma_{NNLO}(Z/\gamma^*)}{\sigma_{LO}(Z/\gamma^*)}$
- DY EW K-factor applied too

Dilepton Results

- Data consistent with SM backgrounds
- Systematic uncertainties considered
 - normalization to Z-peak, PDF choice and QCD corrections
- Set limits on $\sigma \times BR$ for Z' and G*
 - Combine muon and electron
 - Plots show the 95% CL limits

E 71	Limit		
E ₆ Z	$[\text{TeV/c}^2]$	RS C	Graviton
$Z'_{2/2}$	1.76	k/M_{-}	Limit
Z'_N	1.78	κ/ <i>IVI</i> p]	$[\text{TeV/c}^2]$
Z'_n	1.84	0.01	0.91
Z'_I	1.84	0.03	1.45
Z'_{s}	1.90	0.05	1.71
Z'_{χ}	1.96	0.1	2.16
/τ			

R. Moore

Excited Leptons

qq -

- Extension to the SM: quarks, leptons composite particles
 - Each composed of "preons"
 - Excited lepton states may be produced at LHC:
- New parameters introduced
 - A compositeness scale
 - ▶ m_{I*} mass of an excited lepton
- Excited states can decay by emitting photon
 - → BR($\ell^{*\pm} \rightarrow \ell^{\pm} \gamma$) decreases with increasing m_I* (for fixed Λ) ℓ^{+} - Competing decay is $\ell^{*\pm} \rightarrow \ell^{\pm} f \bar{f}$
- Backgrounds
 - Drell-Yan + prompt photon or final/initial state radiation
 - Z+jets with jet mis-identified as a photon
 - Small contribution from ttbar and diboson (WW,WZ,ZZ)
 - W+jet and QCD negligible after lepton+photon isolation

08 Jun 2012

Analysis and Trigger

- Width of l^* predicted to be narrower that detector resolution for $m_{l^*} < 0.5\Lambda$
 - Could use resonance search in $l+\gamma$ mass spectrum BUT ambiguity about which "l" is the decay product $a\bar{a} \rightarrow \ell^{*\pm}\ell^{\mp}$
- Better strategy: look at $l^++l^-+\gamma$ mass spectrum
 - At high invariant mass (>~350GeV/c²) almost no background
 - Covers whole $m_l *-\Lambda$ plane
- Consider only electron and muon channels

	eey Channel	μμγ Channel					
Dataset	4.9 fb ⁻¹	4.8 fb ⁻¹					
Trigger	2 e, E⊤≥20 GeV	I μ , $p_T \ge 22$ GeV/c or I μ , $p_T \ge 40$ GeV/c MSonly					
08 Jun 2012	R. Moore	LBERTA PHYSICS 8					

Selection & Backgrounds

- Electron and µ selection as before
- Common, γ cuts

08 Jun 2012

- ► I "tight" γ , $E_T \ge 25 \text{GeV}$ and $|\eta| < 2.37$
- Isolated: $\sum E_T(\Delta R < 0.4) < 10 \text{ GeV}$
- Separated from leptons to remove Z/γ^* FSR: $\Delta R(\ell, \gamma) > 0.7$
- Background dominated by Z/Y*+Y and Z+jets
 - Monte-Carlo overestimates rate of jet faking γ
 - adjust Z+jets to fit data in signal depleted region where mu<10 GeV/c²
 - Low MC background statistics for m_{ll}>110 GeV/c²
 - Fit each over range 150 < m_{lly} < 950 GeV/c² and use projection where m_{lly}
 > 350 GeV/c²

R. Moore

A STREET AND A STREET

Excited Lepton Results

- Systematics
 - Z+γ background fit dominates due to low statistics with $m_{ll} > 110 \text{ GeV/c}^2$
 - 20-80% for m_{ll} >800 GeV/c²
 - NLO+PDF theory (10%)
 - Z+jets normalization (10%)
 - Luminosity (3.9%)
 - Reconstruction and particle ID [see paper]
- Set limit using Bayesian approach with a flat, positive prior
 - On $\sigma \times BR$ as function of m_{l^*}
 - On m_{l} *- Λ phase space
- For case where $m_l = \Lambda$

08 Jun 2012

- Limits are 2.0 and 1.9 TeV/c² on m_{e^*} and m_{μ} respectively @ 95% CL
- CMS: 1.07(1.09) TeV/c² @ 95% CL for $e^*(\mu^*)$ with 36 pb⁻¹ data

R. Moore

ATLAS Preliminary

L dt = 4.9 fb

s = 7 TeV

Expected limit

xpected ±1 σ

Expected ±2 σ

\ = 2.1 TeV

= 5.0 TeV

Resonant WZ Production

- Some models predict resonant structures in WZ production
 - Extended Gauge Model, Extra Dimensions and Technicolour
- $\begin{array}{l} X \to WZ \to \ell \nu \ell' \overline{\ell}' \ (\ell, \ell' = e, \mu) \\ \bullet \ {\rm e,} \mu \ {\rm criteria \ similar \ to \ other} \end{array}$
 - analyses
 - 2 opposite sign leptons with m_{II} within 20GeV of m_Z
 - 3 lepton and MET>25GeV
 - Only 3 leptons (ZZ background)
 - W transverse mass>15 GeV/c²
 - Backgrounds

08 Jun 2012

- SMWZ, ZZ, Zγ, ll'+jets
- No excess events in 1.02fb⁻¹
 - Set limits on σ×BR for EGM and Technicolour models

Heavy Neutrinos and W_R

- Search for right-handed extension to SM with associated heavy neutrino (N) $q\bar{q}' \rightarrow W_R \rightarrow \ell N$
- Only decays to e,µ considered
 - Event selection criteria very similar to previous analyses
 - N mixing: e+µ in event
 - Majorana: same sign leptons
- Major backgrounds

08 Jun 2012

- Z+jets, ttbar, diboson, single top
- First 2.1fb⁻¹ of 2011 data analyzed

R. Moore

- No events over background
- Set limits in m(W_R)-m(N) plane

----- With mixing, ee+µµ+eµ, Expected With mixing, ee+µµ+eµ, Observed No mixing, ee+µµ, Expected 203.5420 No mixing, ee+µµ, Observed Ldt = 2.1 fb ATLAS $\sqrt{s} = 7 \text{ TeV}$ OS ZMW NDirac 1.5 $m(W_R)$ [TeV/c²] With mixing, ee+µµ+eµ, Expected With mixing, ee+µµ+eµ, Observed No mixing, ee+µµ, Expected No mixing, ee+µµ, Observed Ldt = 2.1 fb ATLAS S = 7 TeV SS+OS F 2 MW N_{Majorana} $m(W_R)$ [TeV/c²] ERSITY OF DEPARTMENT OF

Conclusions

- ATLAS is working on many analyses for beyond SM physics
 - ...this talk is just a taste of the most recent decaying to leptons
 - See the "Searches for Exotics physics states in jets and boosted objects final states" in ~I hour for more searches like lepton-jets
- No signs of new, exciting physics so far but several searches yet to complete on 2011 data
 - 2011 dataset has taken us well beyond the reach of the Tevatron: we are far past the explored energy frontier
- 2012 dataset to look forward to!

R. Moore

- Increased 8 TeV energy good for searches
- ...and increased luminosity too
- Still plenty of opportunity to make some theorists' day....or to ruin it!

Backup Slides

For more information, conference notes, news and event pictures, videos etc. visit: <u>http://atlas.ch</u>/

08 Jun 2012 R. Moore

Dilepton Data Tables

1000						
14	$m_{e^+e^-}$ [GeV]	110 - 200	200 - 400	400 - 800	800 - 1200	1200 - 3000
P.S.	Z/γ^*	26300 ± 800	3080 ± 120	265 ± 14	12.2 ± 0.9	1.46 ± 0.18
-	tī	1300 ± 70	403 ± 26	28 ± 4	1.0 ± 0.8	0.021 ± 0.021
141	Diboson	440 ± 17	147 ± 8	14.7 ± 2.2	1.0 ± 0.4	0.06 ± 0.06
	(W + jets) and QCD	2000 ± 400	420 ± 160	40 ± 40	1.8 ± 1.2	0.11 ± 0.08
	Total	30000 ± 900	4050 ± 200	340 ± 40	16.0 ± 1.8	1.64 ± 0.21
	Data	29993	4038	358	17	3
F	Contraction and the first					
	$m_{\mu^+\mu^-}$ [GeV]	110 - 200	200 - 400	400 - 800	800 - 1200	1200 - 3000
-	Z/γ^*	21000 ± 900	2040 ± 90	174 ± 9	7.3 ± 0.5	0.90 ± 0.11
	tt	830 ± 80	254 ± 24	20.0 ± 2.1	0.59 ± 0.15	< 0.005
-	Diboson	283 ± 15	98 ± 5	12.7 ± 1.0	0.83 ± 0.24	0.022 ± 0.028
1	(W + jets) and QCD	7 ± 4	< 0.5	< 0.5	< 0.05	< 0.005
2	Total	22100 ± 900	2400 ± 90	206 ± 9	8.7 ± 0.6	0.92 ± 0.11
	Data	21941	2293	197	10	2
08	lun 2012 R.	Moore	CERTA SATLAS	UNIVERS ALBE	RTA PH	ARTMENT OF

Excited Lepton Data Table

Region [GeV]	$Z + \gamma$	Z + jets	other	data
$m_{ee} < 110$	195 ± 2	115 ± 16	4.9 ± 0.6	315
$m_{ee} > 110$	32 ± 1	13 ± 3	4.5 ± 0.6	43
$m_{\mu\mu} < 110$	148 ± 2	101 ± 13	4.6 ± 0.6	254
$m_{\mu\mu} > 110$	20 ± 1	2.6 ± 0.9	0.4 ± 0.4	30

$m_{\ell\ell\gamma}$ region		e^* search		μ^* search				
[TeV]	$Z + \gamma$ total bkg		data	$Z + \gamma$	total bkg	data		
> 0.35	12.4 ± 2.2	17.0 ± 2.8	12	7.2 ± 1.2	7.5 ± 1.3	3		
> 0.45	5.9 ± 1.2	7.9 ± 1.6	4	3.6 ± 0.9	3.7 ± 1.0	1		
> 0.55	2.8 ± 0.8	3.7 ± 1.1	0	1.9 ± 0.6	1.9 ± 0.6	1		
> 0.65	1.35 ± 0.56	1.74 ± 0.73	0	0.95 ± 0.39	0.96 ± 0.42	1		
> 0.75	0.64 ± 0.35	0.81 ± 0.46	0	0.49 ± 0.24	0.49 ± 0.27	1		
> 0.85	0.31 ± 0.21	0.38 ± 0.28	0	0.25 ± 0.14	0.25 ± 0.16	1		
> 0.95	0.15 ± 0.12	0.18 ± 0.17	0	0.13 ± 0.08	0.13 ± 0.10	0		

UNIVERSITY OF

08 Jun 2012

R. Moore

17

DEPARTMENT_OF

08 Jun 2012

R. Moore

9

Heavy Neutrino Tables

Physics Processes	$e^{\pm}e^{\mp}$				$\mu^{\pm}\mu^{\mp}$			$e^{\pm}\mu^{\mp}$			Total		
Z/γ^* +jets	136.1	±	12.5	173.2	±	15.1	0.8	±	0.8	310	±	20	
Diboson	4.3	±	1.8	7.3	±	1.9	5.9	±	1.6	18	±	3	
Top	103.1	±	12.3	100.9	±	12.0	199.4	±	23.3	403	±	46	
Fake lepton(s)	12.5	±	8.1	-0.2	±	0.7	6.1	±	4.2	18	±	9	
Total Background	256.0	±	26.2	281.2	±	27.9	212.3	±	33.8	750	±	78	
Observed events	248			245			247		1.1.1.1.1.1.1	740			
		1997			1	$m_{\ell\ell j(j)} \ge 40$	0 GeV						
Total Background	254.8	±	25.8	279.7	±	27.6	210.9	±	33.4	745	±	77	
Observed events	246		202200	241			244			731			

	THE REPORT OF THE R.	Contraction of the			#0 PA	2004		D. W. S. P. Start Street Street	ALC: NO.		And Persons in case of the local division of	1000
Physics Processes		$e^{\pm}e^{\pm}$			$\mu^{\pm}\mu^{\pm}$			$e^{\pm}\mu^{\pm}$		0	Total	
Z/γ^* +jets	26.1	+	5.6	0.0	+	1.6	1.2	±	0.7	27	±	6
Diboson	12.7	±	2.3	7.2	±	1.7	18.8	±	3.0	39	±	6
Тор	5.8	+	1.3	0.7	±	0.3	6.8	±	1.6	13	±	3
Fake lepton(s)	93.6	±	35.7	3.1	±	1.6	53.8	±	20.3	151	±	50
Total Background Observed events	138.3 155	±	36.5	11.0 14	+ -	2.9	80.7 99	±	20.8	230 268	±	52
						$m_{\ell\ell j(j)} \ge 40$	00 GeV					
Total Background Observed events	48.4 59	±	16.1	4.4 8	+	2.1 1.3	24.6 39	±	7.6	77 106	±	21

08 Jun 2012 R. Moore

ATLAS

UNIVERSITY OF

DEPARTMENT OF

20

