

Tracking, Vertexing and B-tagging performance at ATLAS

- ① Introduction
- ② Track reconstruction
- ③ Vertex reconstruction
- ④ b-tagging
- **5** Summary and Outlook

Sara Strandberg, Stockholm University for the ATLAS Collaboration

Tracking and Vertexing in Physics Analyses

- Tracking and vertexing are fundamental ingredients in essentially all physics analyses:
 - Reconstruction of charged leptons.
 - Track-based isolation.
 - Can also complement calorimeter-based estimates of e.g. $E_{\rm T}^{\rm miss}$.
 - Reconstruction of the primary collision point.
 - Identification of jets from *b*-quarks (*b*-tagging).
- Good tracking and *b*-tagging performance in achieved by:
 - High-precision tracking detectors.
 - Good knowledge of the ID material.
 - A precise ID alignment.
 - Performant algorithms (tracking, vertexing, *b*-tagging).

- Build track candidates in three steps:
 - seed finding
 - collect hits in roads
 - rank candidates

• Silicon and drift tube technology.

	# channels	# hits	resolution	active (%)
		/track	($x imes y$) (μ M)	
PIX	80×10^6	3	10×115	95.9
SCT	$6.3 imes 10^6$	8	17×580	99.3
TRT	3.5×10^5	36	130	97.5

- Covers $|\eta| < 2.5$.
- In 2 T magnetic field.

Primary Vertex Reconstruction

- Vertexing crucial in many areas:
 - Reconstruct and identify hard scatter interaction point.
 - Determine pile-up level.
 - PV is reference for b-tagging.

- Iterative vertex finding:
 - Find vertex seeds along z.
 - χ^2 -based fit, outliers removal.
- Baseline is to use the PV with the largest $\sum p_{\rm T}^2$ as hard scatter.
- Association-based selection (jets, e, μ) also supported.

High Pileup Environment

- Tracking in high-pileup environments is very challenging.
- Switch to robust reconstruction setup.
 - Tighter requirements on the silicon hit pattern.
 - Much lower fake rates at minimal loss of efficiency.

Alignment

- Precise knowledge about position of detector elements needed for
 - IP resolution (crucial for *b*-tagging)
 - mass resolution (1 μ m alignment for 10-15 MeV precision in W mass)
- Alignment carried out iteratively by minimizing residuals.
- So called weak modes are distortions which do not affect residuals. Need to resolve these using e.g. known particle masses.

• Need to perform alignment continuously since detector moves due to changes in environment.

World Average [MeV]

mass

Neural Network Clustering

- Good track parameter resolution requires precise knowledge of hit positions in tracker.
- Positions biased in case of merged clusters from nearby particles.
- New NN-based clustering algorithm developed to split clusters which are likely not originating from a single particle.
- Especially relevant in dense environments such as core of high- $p_{\rm T}$ jets.
- Also improves treatment of delta rays.

Impact Parameter Resolution

- Impact parameter (d_0, z_0) indicates if track originates from the PV or not.
- Crucial ingredient when identifying long-lived particles, e.g. *b*-tagging.
- Unfold uncertainty on PV position to measure resolution in data

$\sigma^2(d_0) = \sigma^2(d_0^{\text{track}}) + \sigma^2(PV)$

- Low p_1° well described \rightarrow matched diagram and the state of t
- $\bullet\,$ Worse IP resolution at high $p_{\rm T}$ in data due to misaligment effects.

b-tagging

- b-tagging is a powerful tool to separate a heavy flavor signal (b, top, Higgs, SUSY) from backgrounds.
- Identify decays of b-hadrons in jets by presence of
- tracks with large impact parameter and impact parameter significance.
- secondary decay vertex.
- Crucial to understand and have a good description of the impact parameter of tracks in jets.
- Correct estimate of error on primary and secondary vertex positions.

b-tagging Algorithms

IP-based algorithms

- IP3D uses PDFs in transverse and longitudinal IP significance.
- $w_{\text{track}} = p_b/p_l$.
- $w_{\text{jet}} = \sum_{\text{track}} \log(w_{\text{track}}).$
- Combinations
 - JetFitterCombNN: JetFitter+IP3D.
 - JetFitterCombNNc: Trained to reject *c*.
 - MV1: JetFitterCombNN +IP3D+SV1.

Secondary vertex-based algorithms

- SV1 Reconstructs inclusive SV.
- JetFitter is able to reconstruct full weak ($b \rightarrow c \rightarrow X$) decay chain.
- Both use SV properties to further separate *b*-jets from non-*b*-jets.

Performance in Data - *b***-tag Efficiency**

- Currently use two complementary methods based on μ -jet sample.
- $p_{\rm T}^{\rm rel}$ method: Template fits of muon $p_{\rm T}$ with respect to the jet axis $p_{\rm T}^{\rm rel}$, to get flavor composition before and after *b*-tagging.
- System8 method: Use 3 uncorrelated selection criteria to construct 8 disjoint samples. Use event counts to solve for *b*-tag efficiency.
- Present results as data-to-MC scale factors.
- Excellent agreement between methods.
- Total uncertainty is 5-19%.

Posters by Dominik Duda, Christian Jung and Gordon Watts

ATLAS Preliminary

 $\sqrt{s} = 7 \text{ TeV}$

Data 2011, L = 5 fb⁻¹

D* inside jets

with $p_{-} \in [30,60]$ GeV

Performance in Data - *c***-tag Efficiency**

Entries / 0.25 MeV 0002 0002

1000

500

- Reconstruct $D^{*+} \rightarrow D^0 \pi^+$ ($D^0 \rightarrow K^- \pi^+$).
- b-contamination from D^0 pseudo proper time fit.
- Can compare e.g. weight distributions in background-subtracted sample.
- Generally very good agreement.

Performance in Data - Mistag Rate

- Negative tag method primarily targets mistags from resolution effects and corrects for e.g. long-lived particles and material interactions.
- SV0mass method fits invariant mass of secondary vertex.

- Very good agreement between methods.
- Total uncertainties 10-100(+)%.

Summary and Outlook

- Excellent performance of ATLAS tracking, vertexing and *b*-tagging.
 - Improved alignment, new silicon clustering and track reconstruction optimized for highpileup conditions.
 - New multivariate algorithms have boosted *b*-tagging performance.

- Wide range of measurements confirm that the ATLAS tracking detector is accurately simulated.
 - Track and vertex properties, e.g. IP resolution.
 - *b*-tagging data-to-MC scale factors.
- Looking forward to many interesting physics results in 2012!

Backup Material

Pattern Recognition and Track Fitting

- Two-stage pattern recognition:
 - inside-out: silicon seed
 - + outward extension
 - outside-in: TRT track segment seed
 + inward extension
- Old reconstruction setup:
 - \geq 7 silicon hits
 - \leq 2 pixel holes.
- New reconstruction setup:
 - \geq 9 silicon hits
 - 0 pixel holes.

Primary Vertex Reconstruction

Primary Vertex Resolution

- Measure resolution in data using vertex-splitting technique.
 - Split tracks associated to vertex in two groups.
 - Fit two separate PVs.

Time Dependence of Alignment

Performance in Data - *b***-tag Efficiency**

• $p_{\rm T}^{\rm rel}$ method: Template fits of muon $p_{\rm T}$ with respect to the jet axis, $p_{\rm T}^{\rm rel}$, to get flavor composition before and after *b*-tagging.

- System8 method: Use 3 uncorrelated selection criteria to construct 8 disjoint samples:
- The lifetime tagging criterion under study.
- A muon tagging criterion (muon $p_{\mathrm{T}}^{\mathrm{rel}} > 700$ MeV).
- Opposite side jet tagged by SV0 ($L/\sigma(L)>$ 1)

Performance in Data - *c***-tag Efficiency**

Performance in Data - Mistag Rate

- Negative tag method: Exploits that mistags from resolution effects are blind to jet direction.
- Negative tag rate \approx mistag rate.
- Correct for long-lived particles and material interactions plus heavy-flavor in negatively tagged sample.
- SVOmass method: Fits the invariant mass of tracks associated to secondary vertices.
- Many jets without a SV.

