Non-standard signals of new physics

Adam Martin
(aomartin@fnal.gov)

Fermilab

PLHC 2012, Vancouver
June 8th, 2012
what if none of these SUSY searches see anything?

Adam Martin
(aomartin@fnal.gov)

Fermilab

PLHC 2012, Vancouver
June 8th, 2012
we’ve heard a lot about SUSY, and the Higgs<-> SUSY interplay

but that’s not the only option

more generally

lots of the power in SUSY searches comes from large MET handle

what about new physics (including SUSY) without large MET?
we’ve heard a lot about SUSY, and the Higgs\leftrightarrow SUSY interplay but that’s not the only option

hmm.. where are all those superpartners?

more generally

lots of the power in SUSY searches comes from large MET handle

what about new physics (including SUSY) without large MET?
many things fall into this category

lepto-quarks \(W'/Z' \) black holes
RPV-SUSY contact interactions

BOOSTED OBJECTS etc.

i’ll talk about a couple objects that are common to many BSM models, not covered by ‘usual searches’

AND

where to look if there is no SM Higgs?
vector-like new fermions

ex.) \(T = (T_L, T_R) \ (3, 1)_{2/3} \) \quad \text{same Q# as } t_R

- can have mass without EWSB
- don’t contribute to EW precision obs.

these objects are part of most Little Higgs scenarios, composite models (topcolor) and their 5D counterparts

(Cheng, Dobrescu, Hill 992343; Han, Logan, Wang 0506313; Contino, Kramer, Son, Sundrum 0612180; Contino, Servant 0801.1679, etc..)
vector-like new fermions
(LH, RH quarks that couple the same way)

ex.) $T = (T_L, T_R) \quad (3, 1)_{2/3}$ same Q# as t_R

- can have mass without EWSB
- don’t contribute to EW precision obs.

these objects are part of most Little Higgs scenarios, composite models (topcolor) and their 5D counterparts

(Cheng, Dobrescu, Hill 992343; Han, Logan, Wang 0506313; Contino, Kramer, Son, Sundrum 0612180; Contino, Servant 0801.1679, etc..)
vector–like new fermions

mix with SM

\[y_t Q_3 H t^c + M T T^c + \delta T t^c + h.c. \]

\[\mathcal{L} \supset \frac{m_t \cos^2 \theta_l}{v} h \bar{T}_D (\tan \theta_r P_L + \tan \theta_l P_R) t_D \]
\[+ \frac{g_2 \sin \theta_l \cos \theta_l}{2 \cos \theta_W} Z_\mu (\bar{T}_D \gamma^\mu P_L t_D + \bar{t}_D \gamma^\mu P_L T_D) \]
\[+ \frac{g_2 \sin \theta_l}{\sqrt{2}} (W_{\mu}^+ \bar{T}_D \gamma^\mu P_L b_D + W_{\mu}^- \bar{b}_D \gamma^\mu P_L T_D) \]
Branching ratio, up to small corrections,
set by Goldstone equivalence:
Branching ratio, up to small corrections, set by Goldstone equivalence:

T decay modes

\(T \rightarrow t^c q_3 \)

\(T \rightarrow t h \) \(\sim 25\% \)

\(T \rightarrow t Z \) \(\sim 25\% \)

\(T \rightarrow t W \) \(\sim 50\% \)
Branching ratio, up to small corrections, set by Goldstone equivalence:

in large mass limit, only parameter is M_T
new interaction

Branching ratio, up to small corrections, set by Goldstone equivalence:

T decay modes

in large mass limit, only parameter is M_T

extra ‘chiral’ quarks (4th generation) only have this decay mode
large production cross section, exotic final states

- final states have several b’s, W’s
- helped by application of substructure techniques?

(Han, Logan, Wang)

(Aguilar-Saavedra; Holdom; Kribs, AM, Roy)
vector–like new fermions

searches, but assume 100% into only one mode

\[\text{CMS L = 4.9 fb}^{-1} \text{ at } \sqrt{s} = 7 \text{ TeV} \]

\[\sigma(pp \rightarrow b\bar{b}) [\text{pb}] \]

\[\begin{array}{c} \text{observed limit} \quad \text{2 } \sigma \\ \text{expected limit} \quad \text{1 } \sigma \\ \text{Theory (HATHOR)} \end{array} \]

\[M_{b'} < 611 \text{ GeV/c}^2 \text{ is excluded at 95% CL} \]

- more searches, more modes would be great
- can we use \(T \rightarrow t+h \) channel, or more generally \(X \rightarrow Y+h \)?
- more exotic charges possible

B’→ t W
CMS 1109.4985

also
ATLAS 1204.1265

Rao, Whiteson
1204.4504, 1203.6642
‘Colorons’
new colored states that are dominantly pair produced

Easy to add without causing problems
Ex.) color octet scalar φ

$$|D\varphi|^2 - M_\varphi^2 \varphi^2 - \mu \varphi^3 + \ldots$$

only term that allows φ decay

phenomenology described by very few parameters:
M_φ, $\text{BR}(\varphi \rightarrow jj)$

part of extended SUSY models, extra-dimensional models
limits

4 jet final state
2 pairs of equal-mass dijet resonances
no limit from Tevatron

CMS Preliminary

Pair-Produced Dijet Resonances

- Observed Limit (95% CL)
- Expected Limit (95% CL)

- $\pm 1\sigma$
- $\pm 2\sigma$

Coloron

ATLAS Preliminary

35 pb^{-1}

- Observed
- Expected
- $\pm 1\sigma$
- $\pm 2\sigma$

Scalar-gluon

Hyperpion

Friday, June 8, 2012
• color octet is just an example, lots of particles fall into this category (different spin, EW charge, etc.)

(Burgess, Trott, Zuberi 0907.2696, Gerbush et al 0710.3133, Bai, Dobrescu 1012.5814; Chivukula, Golden, Simmons '91; Dobrescu, Kong, Mahbubani 0709.2378, etc.)

• difficult multi-jet background
 increasing trigger thresholds mean can’t probe light stuff

• don’t have to stop at $\phi \rightarrow gg$, could be $\phi \rightarrow 3q$, etc.

CMS EXO11060

• can have a large impact on Higgs physics, ex.) $\kappa |H|^2 |\phi|^2$

(Dobrescu, Kribs, AM 1112.2208)
What if No Higgs?
still early... lets not get carried away

$m_H = 125$
may be a Higgs with strange decays?

light Higgses are narrow, easy to introduce a new mode that becomes the dominant decay channel

\[\lambda \ |H|^2 X^2 \rightarrow \lambda \nu h X^2 \]

(can.ex.) NMSSM + friends, ‘buried Higgs’ scenario)

can we dig out these final states? 4τ? 4g?

depending on \(m_H, m_X \), final products may be boosted/collimated.. special techniques needed?

Chen et al 1006.1151; Falkowski et al 1006.1650; Bellazzini et al 1012.1316
may be a Higgs with strange decays?

light Higgsses are narrow, easy to introduce a new mode that becomes the dominant decay channel

\[\lambda \, |H|^2 \, X^2 \rightarrow \lambda \, \nu \, h \, X^2 \]

(can.) NMSSM + friends, ‘buried Higgs’ scenario)

can we dig out these final states? 4τ? 4g?

depending on \(m_H, m_X \), final products may be boosted/collimated.. special techniques needed?

Chen et al 1006.1151; Falkowski et al 1006.1650; Bellazzini et al 1012.1316
may be a Higgs with strange decays?

light Higgses are narrow, easy to introduce a new mode that becomes the dominant decay channel

\[\lambda |H|^2 X^2 \rightarrow \lambda \gamma h X^2 \]

(ex.) NMSSM + friends, ‘buried Higgs’ scenario)

can we dig out these final states? 4τ? 4g?

depending on \(m_H, m_X \), final products may be boosted/collimated.. special techniques needed?

Chen et al 1006.1151; Falkowski et al 1006.1650; Bellazzini et al 1012.1316
may be an `unlucky' Higgs

by far, dominant production method at LHC is gluon fusion

loop-level process, sensitive to new physics
may be an `unlucky’ Higgs

by far, dominant production method at LHC is gluon fusion

loop-level process, sensitive to new physics

ex.) add in new particle which interferes destructively...
may be an `unlucky’ Higgs

by far, dominant production method at LHC is gluon fusion

\[g \quad \rightarrow \quad t \quad t \quad H^0 \]

loop-level process, sensitive to new physics

ex.) add in new particle which interferes destructively...

can easily reduce rate to 1/4, even 1/10 SM

BUT, should see new particle **S**...

plus, there are other ways to make Higgses

and suppressed gg→h means enhanced gg→hh
may be an `unlucky’ Higgs

by far, dominant production method at LHC is gluon fusion

loop-level process, sensitive to new physics

vector boson fusion
~10% of gg→H^0

associated production
(Higgs-strahlung)
~1% of gg→H^0
may be an ‘unlucky’ Higgs

by far, dominant production method at LHC is gluon fusion

\[
\text{g} \xrightarrow{\text{loop-level process, sensitive to new physics}} \text{H}^0
\]

ex.) add in new particle which interferes destructively...

can easily reduce rate to 1/4, even 1/10 SM

\textbf{BUT}, should see new particle \textit{S}...

plus, there are other ways to make Higgses

and suppressed gg→h means enhanced gg→hh

Friday, June 8, 2012
No Higgs at all? No problem

no Higgs = loss of unitarity?
No Higgs at all? No problem

no Higgs = loss of unitarity?

NO
No Higgs at all? No problem

no Higgs = loss of unitarity?

NO

no Higgs = loss of **perturbative** unitarity?

\[\sim E^2 \]
No Higgs at all? No problem

no Higgs = loss of unitarity?

NO

no Higgs = loss of *perturbative* unitarity?

need

\[W_L \]

\[W_L \]

\[W_L \]

\[W_L \]
No Higgs at all? No problem

no Higgs = loss of unitarity?

NO

no Higgs = loss of perturbative unitarity?

need

\[\begin{align*}
W_L & \quad \ quad
Strong dynamics

biggest problem is that we can’t calculate
to estimate pheno, often take QCD as an example and rescale masses, etc. from GeV -> TeV

\[\rho \rightarrow \rho_T, \pi \rightarrow \pi_T \]

but there is no reason that new strong dynamics should be like QCD

+ know from susy-QCD that small changes in matter content can lead to big changes in theory
Does it matter?

EW-precision observables are the biggest complaint about strong dynamics.
Does it matter?

EW-precision observables are the biggest complaint about strong dynamics.

Recent lattice results indicate increased N_F leads to more slowly running coupling + minimal EW content \rightarrow small S.

Estimates obtained by assuming strong dynamics \sim QCD.
what then?

only ‘model–independent’ place to look is WW scattering

(Birkedal, Matchev, Perelstein 0412278)

resonant production: model–dependent, but potentially much bigger rate
Conclusions

We are in the LHC era... we should expect the unexpected

large MET searches are a useful tool for BSM-hunting, but not the only tool

must be ready for other possibilities. As always, require excellent understanding of SM backgrounds

potentially powerful searches are out there:

w/ few parameters, could rule out/in many models

vector-like fermions, colorons

are we ready for no Higgs?