Status of MC event generators

Stefan Höche

SLAC NAL Theory Group

Physics at the LHC Vancouver, 06/06/12

Event generation for the LHC

SLAC

Structure of simulated LHC events

- Hard interaction
- QCD evolution
- Secondary hard interactions
- Jet fragmentation
- Hadron decays
- Higher-order QED corrections

Much recent progress on hard QCD Benefits from "NLO revolution"

Improved models for MPI and fragmentation Combined with systematic tuning efforts

Three general-purpose tools with slightly different structure and emphasis

Herwig

- ullet Originated in coherent shower studies \rightarrow angular ordered PS
- Front-runner in development of MC@NLO and POWHEG
- Simple in-house ME generator & spin-correlated decay chains
- Original framework for cluster fragmentation

Pythia

- \bullet Originated in hadronization studies \rightarrow Lund string
- Leading in development of multiple interaction models
- $\bullet\,$ Pragmatic attitude to ME generation $\rightarrow\,$ external tools
- Extensive PS development and earliest ME $\otimes PS$ matching

Sherpa

- Started with PS generator APACIC++ & ME generator AMEGIC++
- Current MPI model and hadronization pragmatic add-ons
- \bullet Leading in development of automated $ME{\otimes}PS$ merging
- Automated framework for NLO calculations and MC@NLO

For more information, check out [Buckley et al.] Phys.Rept.504(2011)145 For updates and news, go to http://www.montecarlonet.org

Rivet [Buckley et al.] arXiv:0103.0694

- LHC-successor to HZTool Collection of exp. data & matching analysis routines
- Spirit: "Right MC describes everything at the same time"

Professor [Buckley et al.] EPJC65(2010)331

- Tuning in multi-dimensional parameter space of MC
- Generate event samples at random parameter points Analyze them with Rivet Parametrize observables Minimize χ^2 and cross-check

Tune comparisons

Deviation metrics per gen/tune and observable group:

Gen	Tune	UE	Dijets	Multijets	Jet shapes	W and Z	Fragmentation	B frag
AlpGen	HERWIG6	-	1.83	5.36	2.48	0.91	-	-
	PYTHIA6-AMBT1	-	1.55	2.80	0.61	0.53	-	-
	PYTHIA6-D6T	-	1.38	2.67	2.31	1.67	-	-
	PYTHIA6-P2010	-	1.09	2.65	2.03	1.48	-	-
	PYTHIA6-P2011	-	1.12	2.60	0.48	0.24	-	-
	PYTHIA6-Z2	-	1.48	2.63	0.55	0.48	-	-
	PYTHIA6-profQ2	-	1.16	2.65	1.43	1.29	-	-
HERWIG	AUET2-CTEQ6L1	0.43	0.55	0.77	0.35	0.58	22.80	2.38
	AUET2-LOXX	0.25	0.71	0.60	0.39	0.88	22.13	2.29
Herwig++	2.5.1-UE-EE-3-CTEQ6L1	0.27	0.87	0.78	0.51	0.98	10.58	1.32
	2.5.1-UE-EE-3-MRSTLOxx	0.23	1.05	0.78	0.50	0.65	10.58	1.32
РҮТНІАб	AMBT1	0.39	1.20	0.54	0.77	0.27	0.93	1.65
	AUET2B-CTEQ6L1	0.16	0.92	0.44	0.59	0.74	0.67	1.29
	AUET2B-LOxx	0.13	1.33	0.55	0.58	1.15	0.67	1.30
	D6T	0.58	0.79	0.50	0.56	1.25	0.36	2.63
	DW	0.81	0.78	0.61	0.56	1.33	0.36	2.63
	P2010	0.30	0.93	0.82	1.07	0.30	0.44	1.75
	P2011	0.12	0.89	0.67	1.02	0.53	0.43	2.13
	ProfQ2	0.51	0.67	0.81	0.51	0.64	0.30	1.65
	Z2	0.18	0.94	0.73	0.80	0.30	0.95	2.78
Pythia8	4C	0.30	0.97	0.93	0.50	0.90	0.38	1.12
Sherpa	1.3.1	0.68	0.47	0.34	0.71	0.36	0.75	2.48

 $[\mathsf{LH'11}~\mathsf{SM}~\mathsf{WG}]~\mathsf{arXiv:}1203.6803~[\mathsf{hep-ph}]$

http://rivet.hepforge.org/tunecmp/

High-multiplicity LO matrix elements

Parton showers

Matrix-element parton-shower merging (ME \otimes PS)

High-multiplicity NLO matrix elements

NLO matrix-element parton-shower matching

Matrix element tools

Plethora of tree-level tools on market **State of the art: Full automation**

• Feynman diagrams

- AMEGIC++ [Krauss et al.] JHEP02(2002)044
- CompHEP [Boos et al.] NIMA534(2004)250
- MADGRAPH [Alwall et al.] JHEP02(2011)128

• Recursive techniques

- Comix [Gleisberg,SH] JHEP12(2008)039
- HELAC [Kanaki,Papadopoulos] CPC132(2000)306
- O'Mega [Moretti,Ohl,Reuter] hep-ph/0102195
- α-algorithm
 - ALPGEN [Mangano et al.] JHEP07(2001)003

LHEF output for passing events to external MC $\mathsf{HERWIG}{++}$ & <code>PYTHIA</code>

Useful plugins for NLO calculation \rightarrow Born, real emission & subtraction

Matrix element tools

Tree-level ME generators suited for any physics model but implementing Feynman rules tedious and error-prone

Automated by FeynRules

[Christensen, Duhr] CPC180(2009)1614

- Extract vertices from Lagrangian based on minimal information about particle content
- Write ME-generator specific output
 → universality and cross-checks

Recent developments include:

- UFO [Degrande,Duhr,Fuks,Grellscheid,Mattelaer,Reiter] CPC183(2012)1201 Model files and Feynman rules \rightarrow self-contained Python library ALOHA [deAquino,Link,Maltoni,Mattelaer,Stelzer] arXiv:1108.2041 \rightarrow MADGRAPH Automated implementation of arbitrary higher-dimensional operators
- Spin-3/2 particles and superfield formalism
- Counterterms for NLO ME generators

NLO prediction {

Singularities in V & R to be removed before MC-integration

$$\sigma^{\textit{NLO}} = \int \mathrm{d} \Phi_{\textit{B}} \, \left(\mathrm{B} + \tilde{\mathrm{V}} \right) + \int \mathrm{d} \Phi_{\textit{R}} \, \mathrm{R} = \int \mathrm{d} \Phi_{\textit{B}} \, \left[\left(\mathrm{B} + \tilde{\mathrm{V}} + I^{(S)} \right) + \int \mathrm{d} \Phi_{\textit{R}|\textit{B}} \, \left(\mathrm{R} - D^{(S)} \right) \right]$$

Commonly used subtraction techniques:

- Dipole method [Catani,Seymour] NPB485(1997)291
 [Catani,Dittmaier,Seymour,Trocsanyi] NPB627(2002)189, implemented in
 - AMEGIC++ [Gleisberg,Krauss] EPJC53(2008)501, Comix [SH] colorful
 - HELAC/PHEGAS [Czakon, Papadopoulos, Worek] JHEP08(2009)085 polarized
 - MADDIPOLE [Frederix,Gehrmann,Greiner] JHEP09(2008)122, JHEP06(2010)096
- FKS method [Frixione,Kunszt,Signer] NPB467(1996)399, implemented in
 - MADFKS [Frederix, Frixione, Maltoni, Stelzer] JHEP10(2003)009

Several other implementations, which are not part of automated tree-level tools

Assume parton shower with same structure as NLO-subtraction method Expectation value of observable O to $\mathcal{O}(\alpha_s)$ in PS approximation:

$$\langle O \rangle = \sum \int \mathrm{d}\Phi_B \operatorname{B}\left[\Delta^{(\mathrm{PS})}(t_0) \, O(\Phi_B) + \sum_i \int_{t_0}^{Q^2} \mathrm{d}\Phi^i_{R|B} \operatorname{K}_i \, \Delta^{(\mathrm{PS})}(t(\Phi_{R|B})) \, O(\Phi_R)\right]$$

where $\Delta_i^{(PS)}(t) = \exp\left\{-\int_t^{Q^2} \mathrm{d}\Phi_{R|B}^i \mathrm{K}_i\right\}$

Make this NLO-correct:

- Radiation pattern of R from ME correction Correction weight $w = D_i^{(A)}/BK_i$, where $D_i^{(A)} \rightarrow$ dipole term
- Replace $B \to \bar{B}^{(A)} = B + \tilde{V} + I^{(S)} + \sum_{i} \int d\Phi^{i}_{R|B} \left[D^{(A)}_{i} D^{(S)}_{i} \right]$
- Add hard remainder function $\int d\Phi_R H^{(A)}$, where $H^{(A)} = \left[R \sum_i D_i^{(A)} \right]$

Defines MC@NLO algorithm [Frixione,Webber] JHEP06(2002)029

$$\begin{split} \langle O \rangle &= \sum \int \mathrm{d} \Phi_B \, \bar{\mathrm{B}}^{(\mathrm{A})} \Big[\bar{\Delta}^{(\mathrm{A})}(t_0) \, O(\Phi_B) \\ &+ \sum_i \int_{t_0}^{Q^2} \mathrm{d} \Phi^i_{R|B} \, \frac{\mathrm{D}^{(\mathrm{A})}_i}{\mathrm{B}} \, \bar{\Delta}^{(\mathrm{A})}(t(\Phi_{R|B})) \, O(\Phi_R) \Big] + \int \mathrm{d} \Phi_R \, \mathrm{H}^{(\mathrm{A})} \, O(\Phi_R) \end{split}$$

Standard method to combine NLO with MC POWHEG almost identical

Automated in aMC@NLO

Using MADFKS subtraction and fHERWIG PS Framework for convenient uncertainty estimate

- *tth* PLB701(2011)427
- $W^\pm/Z + bar b$ Jhepo9(2011)061
- 4 leptons JHEP02(2012)099
- $W^{\pm}+2$ jets JHEP02(2012)048

Substantial simplification of MC@NLO if $D^{(A)} \rightarrow D^{(S)} \Rightarrow$ zero integral in $\bar{B}^{(A)}$

Works well for $W+\leq$ 3 jets \rightarrow

or inclusive QCD jets (/ next slide)

Automated for light partons **Released with Sherpa 1.4.0**

Resummation scale defined by $\alpha_{\rm cut}$ will be changed to k_T in next version

Exp data: [ATLAS] EPJC71(2011)1512

POWHEG

Originally $D^{(A)}$ defined by PS kernels + soft suppression function (subleading color)

Use instead $\mathbf{R}^{(\mathrm{A})}_i = \mathbf{D}^{(\mathrm{S})}_i / \sum \mathbf{D}^{(\mathrm{S})} \mathbf{R}$

→ MC@NLO becomes POWHEG [Frixione,Nason,Oleari] JHEP11(2007)070

Partially automated in **POWHEGBOX**

[Alioli,Oleari,Nason,Re] JHEP06(2010)043

- FKS subtraction
- PYTHIA/fHERWIG PS

[Campbell,Ellis,Frederix,Nason,Oleari,Williams] arXiv:1202.5475 [hep-ph]

 $\mathsf{POWHEGBOX}$ originally aimed at providing framework only \rightarrow many contributors and rapid development

[Barzè, Bernaciak, Bagnaschi, Campbell, Ellis, Frederix, deGrassi, Jäger, Klasen, Kovarik, Melia, Moch, Montagna, Nicrosini, Piccinini, Reina, Ridolfi, Rontsch, Slavich, Uwer, Vicini, Wackeroth, Weydert, Williams, Zanderighi]

Now heading towards full automation using MADGRAPH & GOSAM

EW corrections in the POWHEGBOX

Single vector boson production \rightarrow two different implementations:

- NLO QCD+EW \otimes QCD PS [Bernaciak,Wackeroth] arXiv:1201.4804 [hep-ph]
- NLO QCD+EW \otimes QCD+QED PS [Barzè et al.] JHEP04(2012)037

[Barzè, Montagna, Nason, Nicrosini, Piccinini] JHEP04(2012)037

[Bernaciak,Wackeroth] arXiv:1201.4804 [hep-ph]

POWHEG

Some in-house implementations of $\ensuremath{\mathsf{POWHEG}}$ in $\ensuremath{\mathsf{HERWIG}}\xspace++$

- Drell-Yan JHEP10(2008)015
- W/Z+Higgs JHEP05(2009)112
- Higgs in GF JHEP04(2009)116
- DIS & VBF arXiv:1106.2983 [hep-ph]
- Diphoton JHEP02(2012)130

Truncated PS always included! While argued that necessary in principle truncated PS is **neglected** in POWHEGBOX

Elegant solution for diphoton production: Split real-emission ME into QCD & QED parts using respective subtraction terms

$$R_{\rm QCD}^{(A)} = R \ \frac{\sum D_{\rm QCD}^{(A)}}{\sum D_{\rm QCD}^{(A)} + \sum D_{\rm QED}^{(A)}}$$

[d'Errico, Richardson] JHEP02(2012)130

Controversial issue: What is resummed in POWHEG / MC@NLO? ${\rm D^{(A)}/~H^{(A)}}$ can be adjusted in functional form & active phase space MC@NLO \rightarrow a-priori choice / POWHEG \rightarrow tuneable damping parameter h

Why important? Two examples:

Limited phase-space coverage of PS \rightarrow dead zones appear as "MC@NLO dip"

1.4 MC@NLO -MC@NLO, no K-factor ·· MC@NLO 1.210-2 POWHEG h→∞ HEBWIG POWHEG+PYTHIA --- POWHEG h=m_H=400 GeV 1 ---- POWHEG h=120 GeV lo/dp^H [pb/GeV] $k_{\rm T}^{\rm jet} \ge 20 \; {\rm GeV}$ 0.8 10-3 $d\sigma/d\Delta y ~[pb]$ NI.O 0.6 0.4 10-4 LHC 0.2m,→∞ $\mu_{\rm R} = \mu_{\rm F} = m_{\rm T}^{\rm H}$ 10-5 -3 -2 2 3 -4 200 600 400 p^H₇ [GeV] $\Delta y = y_H - y_{jet}$ [Nason, Webber] arXiv:1202.1251 [hep-ph] [Nason,Webber] arXiv:1202.1251 [hep-ph]

h not defined by resummation scale \rightarrow disagreement with NLO in high- p_T tails

MC@NLO and POWHEG both rely on general-purpose MC for subsequent showering

Kinematic effects & scale choices play a role \rightarrow PS model affects accuracy of matched NLO result

Need improved parton showers as part of general-purpose MC

Various new implementations but few public codes on market

PS, Hadronization, & MPI linked \rightarrow combined tuning necessary!

[Schumann,Siegert,SH] PRD81(2010)034026

Most promising progress from dipole-like parton showers [Schumann,Krauss] JHEP03(2008)038, [Plätzer,Gieseke] JHEP01(2011)024

Sector showers interesting new alternative, but no IS shower yet [Giele,Kosower,Skands] PRD84(2011)054003, [Larkoski,Peskin] PRD81(2010)054010

ME⊗PS merging

Separate radiation into "hard" & "soft" [Catani,Krauss,Kuhn,Webber] JHEP11(2001)063 [Krauss,Schumann,Siegert,SH] JHEP05(2009)053

- Real-emission ME in hard domain
- PS approximation in soft domain

need measure for "hard" & "soft" \rightarrow above / below critical value in Jet criterion Q e.g. k_T -jet measure

If Q different from evolution variable truncated showers needed to maintain logarithmic accuracy of original PS

Only two implementations so far

- SHERPA JHEP05(2009)053
- HERWIG++ JHEP11(2009)038

Requires intimate knowledge of PS

Lessons from DIS @ HERA: Simulation often too focused on resonant contributions

Sometimes need be inclusive e.g. for low-mass Drell-Yan or photon & diphoton events

ME⊗PS merging

New, promising merging approach

in Pythia 8 [Lönnblad, Prestel] JHEP03(2012)019

- CKKW-L like [Lönnblad] JHEP05(2002)046 Works for interleaved showers
- Based on recasting jet criterion into hybrid of *Q* and PS evolution variable
- Alternative solution to truncated PS same formal accuracy in most regions
- Difficult to disentangle effects of phase-space separation analytically most likely not an issue in practice

(*d*)

Uncertainty estimates

SLAC

Often good description of data with one approach (or one tool) but not so good with another \rightarrow need systematic study of differences

Uncertainty estimates

Need more systematic quantification of hadronization & MPI uncertainties Instead of many different tunes, provide "error tunes"? like PDF \rightarrow Joint effort of theory and experiment

Need MC comparison at different levels and including full uncertainties

Pinpoint where tools could look alike and why they don't \rightarrow Joint effort of theory and theory

Minimum Bias

Optical theorem relates σ_{tot} to elastic forward scattering (Pomeron) Elastic bare Pomeron exchange simulated as rapidity evolution Rescattering in high density

& strong coupling regime

$\mathsf{Proton}\ \mathsf{FF} \leftrightarrow \mathsf{diffractive}\ \mathsf{Eigenstates}$

[Hoeth,Khoze,Krauss,Martin,Ryskin,Zapp] SM@LHC'12

- ${\scriptstyle \bullet}\,$ HERWIG++, PYTHIA & SHERPA ${\rightarrow}$ frameworks for LHC event simulation
- Lots of progress to combine NLO tools with these general-purpose MC
- Systematic uncertainty studies should enhance physics capabilities

Multi-particle cuts and generalized unitarity simplify loop integration:

$$A_{loop} = \sum d_i + \sum c_i + \sum b_i \times + R + \mathcal{O}(\epsilon)$$

Cut-constructible part of virtual amplitude reduced to scalar integrals at integrand level \rightarrow determine coefficients from tree amplitudes [Ossola,Papadopoulos,Pittau] NPB763(2007)147, [Forde] PRD75(2007)125019

Various (semi-)automated codes:

- BlackHat [Bern, Dixon, Febres-Cordero, Höche, Ita, Kosower, Maître, Ozeren]
- GoSam [Cullen, Greiner, Heinrich, Luisoni, Mastrolia, Ossola, Reiter, Tramontano]
- Helac-NLO [Bevilacqua,Czakon,Garzelli,van Hameren,Malamos,Papadopoulos,Pittau,Worek]
- MadLoop [Hirschi, Frederix, Frixione, Garzelli, Maltoni, Pittau]
- OpenLoops [Cascioli, Maierhöfer, Pozzorini]
- Rocket [Ellis,Giele,Kunszt,Melnikov,Zanderighi]
- & others [Badger,Lazopoulos,Giele,Kunszt, Winter,...]

Standalone programs, but also "loop engines" for MC@NLO & POWHEG Anticipate symbiotic relationship with tree-level tools \rightarrow Binoth LH interface

Example: BlackHat \oplus Comix

Four-jet production at 7 TeV LHCFirst results for W+5 jets[BlackHat] arXiv:1112.3940 [hep-ph]Highly preliminary! [BlackHat]