# Top Physics at the Tevatron





Dept. of Physics, Burnaby • Vancouver • Surrey, Canada



7<sup>th</sup> Physics at the LHC Vancouver, June 4-9, 2012

Results from the Tevatron, on behalf of the CDF and D0 Collaborations



#### Tevatron



- 1.96 TeV proton anti-proton collider
- Record Inst. Lum. 4.3•10<sup>32</sup> [cm<sup>-2</sup>sec<sup>-1</sup>]
- Run II from 2001 2011
- Birth place of top quarks





Results shown in the following based on datasets up to 8.7 fb<sup>-1</sup>

### **Tevatron Run II Experiments**



Bernd Stelzer, SFU

**PLHC 2012** 

### **Top Quark Physics**

- Exciting physics!
  - The Tevatron discovery in 1995 ended a 20 year quest for the top
  - Single top observation in 2009 added a new source of top quarks





- Open question persists... Why is the top so massive?  $m_{top} \sim 175 \text{ GeV/c}^2$ ! Is the top quark special?
- Top Quark in the Standard Model -SU(2) partner of the bottom quark -Spin-1/2, Charge +2/3e, Width ~ 1.5 GeV
- Determine nature of top quark experimentally
- Large mass comes with interesting features
- -Decay through  $t \rightarrow Wb$  kinematically allowed
- -Top decays before hadronization, study "bare quark"



### **Tevatron Top Quark Physics Program**



Tevatron program is systematically studying the physics of top quarks...

| Bernd Stelzer, SFU | PLHC 2012 |  |
|--------------------|-----------|--|
|                    |           |  |

#### Top Quark Production at the Tevatron



Bernd Stelzer, SFU



### Top Quark Property Measurements

| Property                                                                                   | Run II Measurement                                                                                                              |                                                                                                                                               | SM prediction                 | Lumi (fb <sup>-1</sup> ) |
|--------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|--------------------------|
| m <sub>t</sub>                                                                             | CDF: 172.8 ± 0.5(stat) ± 0.9(syst) GeV<br>D0: 174.2 ± 0.9(stat) ± 1.5(syst) GeV                                                 |                                                                                                                                               |                               | 8.7<br>3.6               |
| $\sigma_{ttbar}$ (m <sub>t</sub> =172.5 GeV)<br>$\sigma_{ttbar}$ (m <sub>t</sub> =170 GeV) | CDF: $7.50 \pm 0.$<br>D0: $7.84 + 0.46_{-0}$                                                                                    | 31 (stat) ± 0.34 (syst) ± 0.15 (lumi) pb<br>.45 (stat) <sup>+0.66</sup> - <sub>0.54</sub> (syst) <sup>+ 0.54</sup> <sub>-0.46</sub> (lumi) pb | 7.5 ± 0.5 pb<br>7.4 ± 0.6 pb  | 4.5<br>5.3               |
| $\sigma_{singletop}$ (@m <sub>t</sub> =172.5 GeV)                                          | CDF: 3.04 +0.57                                                                                                                 | <sub>-0.53</sub> (stat+syst) D0: 3.43 <sup>+0.73</sup> -0.74 (stat+syst                                                                       | t) 3.1±0.8 pb                 | 7.5 / 5.4                |
| V <sub>tb</sub>                                                                            | CDF: 0.96 ± 0.                                                                                                                  | 09 (exp) ± 0.05 (theo) / D0: 1.02 <sup>+0.10</sup> -0.10                                                                                      | 1                             | 7.5 / 5.4                |
| σ(gg->ttbar)/σ(qq->ttbar)                                                                  | D0: 0.07+0.15                                                                                                                   | -0.07(stat+sys)                                                                                                                               | 0.18                          | 1                        |
| m <sub>t</sub> - m <sub>tbar</sub>                                                         | CDF: -2.0 ± 1.<br>D0: 0.8 ± 1.8                                                                                                 | CDF: -2.0 ± 1.1 (stat) ± 0.6 (sys) GeV<br>D0: 0.8 ± 1.8 (stat) ± 0.5 (sys) GeV                                                                |                               | 7.5<br>3.6               |
| $\sigma(tt \rightarrow ll) / \sigma(tt \rightarrow l+jets)$                                | D0: 0.86 +0.19                                                                                                                  | D0: 0.86 +0.19 -0.17 (stat+syst)                                                                                                              |                               | 1                        |
| $\sigma(tt \rightarrow \tau l) / \sigma(tt \rightarrow ll + l+jets)$                       | D0: 0.97 +0.32                                                                                                                  | D0: 0.97 +0.32 -0.29 (stat+syst)                                                                                                              |                               | 1                        |
| $\sigma_{ttbar+jets}$ (@m <sub>t</sub> =172.5 GeV)                                         | CDF: 1.6 ± 0.2 (stat) ± 0.5 (syst)                                                                                              |                                                                                                                                               | 1.79+0.16 -0.31 pb            | 4.1                      |
| СТтор                                                                                      | CDF: 52.5µm @ 95%C.L.                                                                                                           |                                                                                                                                               | 10 <sup>-10</sup> μm          | 0.3                      |
| Top width                                                                                  | CDF: <7.6 GeV @ 95% C.L. / D0: 2.0 ± 0.5 GeV                                                                                    |                                                                                                                                               | 1.5 GeV                       | 4.3 / 5.4                |
| BR(t->Wb)/BR(t->Wq)                                                                        | CDF: 0.91 ± 0.9 (stat+syst)<br>D0: 0.90 ± 0.4 (stat+syst)                                                                       |                                                                                                                                               | 1<br>1                        | 7.5<br>5.3               |
| W-boson Helicity                                                                           | Tevatron: $f_0=0.72 \pm 0.08 f_{+}=-0.03 \pm 0.05$                                                                              |                                                                                                                                               | $f_0 = 0.7, f_+ = 0$          | 5                        |
| Charge                                                                                     | CDF: 4e/3 excluded with 99% C.L.<br>D0: 4e/3 excluded at 92% C.L.                                                               |                                                                                                                                               | 2/3                           | 5.8<br>0.37              |
| Spin correlations                                                                          | CDF: $\kappa^{LJ} = 0.72 \pm 0.69$ , $\kappa^{Dil} = 0.04 \pm 0.56$ (stat + syst)<br>D0: $\kappa = 0.66 \pm 0.23$ (stat + syst) |                                                                                                                                               | 0.78 <sub>-0.022</sub> +0.027 | 5.1<br>5.3               |
| Charge asymmetry                                                                           | CDF: 16.2 ± 4.7 % (stat + syst)<br>D0: 19.6 ± 6 % (stat + syst)                                                                 |                                                                                                                                               | 6.6 %                         | 8.7<br>5.4               |
| Bernd Stelzer, SFL                                                                         | J                                                                                                                               | PLHC 2012                                                                                                                                     |                               | 7                        |

### Top Quark Pair Production and Decay



#### • **Dilepton** (lepton = e or μ) (6%)

- Small rate, small backgrounds
- Main background: Drell-Yan
- Highest purity

#### • Lepton+Jets (lepton = e or $\mu$ ) (34%)

- Good rate and manageable backgrounds
- Main background: W+jets,
- Good purity "Golden Channel"

#### All-hadronic (46%)

- Large rate, large background
- Main background: QCD multijet
- Least purity

#### • Hadronic Taus (tau+jets/lep, "MET+jets") (14%)

- Small rate and large backgrounds
- Main background: Multijets, W+jets
- Challenging purity

#### **Top Pair Production Cross Section**

#### **CDF Run II**



#### DØ Run II





#### Top Quark Mass



# Top Anti-top Mass Difference

• If CPT is a good symmetry of nature:

 $\Delta M_t = M_{top} - M_{anti-top} = 0$ 



Only measurement for a "bare quark" - consistent with SM expectations

# W-boson Helicity Fraction in Top Decays



Bernd Stelzer, SFU

**PLHC 2012** 

### **Top Branching Fraction Ratio**

- Expect 2 b's for each top anti-top event
  - b-tagging efficiency determines expected yield with 0, 1, or 2 tagged jets
  - Determine R from  $N_{tag}$  distribution
  - Derive |V<sub>tb</sub>| from R (assumes CKM unitary)



# Standard Model predicts R~1 $R = \frac{BR(t \to Wb)}{BR(t \to Wq)} = \frac{|V_{tb}|^2}{|V_{td}|^2 + |V_{ts}|^2 + |V_{tb}|^2}$



13

# Single Top Quark Production



B.W. Harris, Phys. Rev. D66, 054024 (2002), Sullivan, Phys. Rev. D70, 114012 (2004).
Campbell/Ellis/Tramontano, Phys. Rev. D70, 094012 (2004).
N. Kidonakis, Phys. Rev. D83 091503 (2011).

- Joint CDF/D0 Observation, March 2009 PRL 103, 092002 (2009), PRL 103, 092001 (2009)
- Direct access to CKM element  $|V_{tb}|$
- Difficult measurement
  - Small cross section / less distinct final state
  - Large backgrounds with large uncertainties
  - Need advanced techniques + b tagging
  - Matrix Elements, Neural Networks, BDTs,...

Tevatron (3.2 fb<sup>-1</sup>) Combination  $|V_{tb}| = 0.91 \pm 0.08$ ;  $|V_{tb}| > 0.79$  at 95% C.L.

• Measure  $V_{\mbox{\tiny tb}}$  from Tevatron combination



### Updated Single Top Measurements

**CDF** Neural Network analysis



15

# Single Top Separate Channels (2D)



Both channels are sensitive to different BSM scenarios "Single top as window to new Physics"

### Top Quark Width

- SM Prediction: Γ<sub>t</sub> ~1.5 GeV
  - Direct measurement of top decay width
  - Based on template top mass measurement extended to floating top quark width



0.3 GeV <  $\Gamma_{t}$  < 4.4 GeV at 68% C.L.

 $\Gamma_{t}$  < 7.6 GeV at 95% C.L.

- Derive width from other properties
  - Complementary to direct measure



Bernd Stelzer, SFU



### Top Anti-Top Quark Spin Correlations

Top spins are correlated only if top lifetime is short enough

-Spin-spin correlation is observable in the top quark decay products



### Forward Backward Asymmetry



- SM predicts small asymmetry at NLO QCD: A<sub>fb</sub>=0.066 Pc
- New physics could enhance observed A<sub>fb</sub>

**Powheg + EW Corrections:** JHEP 0709, 126 (2007), Phys. Rev. D 84, 093003 (2011); JHEP 1201, 063 (2012)



# Forward Backward Asymmetry

 To compare to theory, data is corrected for background, acceptance and resolution effects (back to parton level)



 Updates from CDF using 8.7 fb<sup>-1</sup> Inclusive parton level asymmetry:

#### $A^{\Delta y}_{FB} = 0.162\% \pm 0.047\%$

Comparable to previous CDF and D0 results



Bernd Stelzer, SFU

### Forward Backward Asymmetry

- $A_{FB}$  vs mass of the ttbar system
- NLO A<sub>FB</sub> dependence on M<sub>ttbar</sub> is more shallow than observed data
- Corrected for acceptance and detector resolution

| Slope | A <sub>FB</sub> vs. M <sub>tt</sub> |
|-------|-------------------------------------|
| Data  | (15.6 ± 5.0)×10⁻⁴                   |
| SM    | 3.3×10-4                            |



| M <sub>tt</sub> (GeV) | NLO (QCD+EW) | CDF 5.3 fb <sup>-1</sup> | CDF 8.7 fb <sup>-1</sup> | D0 5.4 fb <sup>-1</sup> |
|-----------------------|--------------|--------------------------|--------------------------|-------------------------|
| Inclusive             | 0.066        | 0.158 ± 0.074            | 0.162 ± 0.047            | 0.196 ± 0.065           |
| < 450                 | 0.047        | -0.116 ± 0.153           | 0.078 ± 0.054            |                         |
| > 450                 | 0.100        | 0.475 ± 0.112            | 0.296 ± 0.067            |                         |

CDF Run II Preliminary L = 8.7 fb<sup>-1</sup>

# Search for ttbar Resonances

- Resonance production of *tt* is predicted by several new physics models
  - Top color assisted technicolor with leptophobic Z´
  - Randall Sundrum KK-gluons, colorons, etc..
- Search for bumps in M<sub>tt</sub>
  - Assume narrow width (1.2%), dominated by resolution
  - Lepton plus Jets channel



D0 (5.3 fb<sup>-1</sup>): >835 GeV/c<sup>2</sup> at 95% CL





### Search for Top-Jet Resonances

- Search for a heavy new particle *M* produced in association with a top quark  $p\overline{p} \rightarrow Mt \rightarrow \overline{t}qt$
- Search for a resonance in the t+q system
- Lot's of activity in BSM phenomenology BSM attempting to explain large top anti-top  $A_{FB}$





#### Summary

- The discovery of the top quark opened up a rich field in HEP
- Precision top quark physics at the Tevatron
  - $\rightarrow$  Precision on top quark mass ~0.6 % (single measurement) ~0.5% Tevatron
  - → Production cross section (~6%) measurements are theory limited
  - → Single top measured to <20%,  $|V_{tb}| \sim 10\%$ , observation of t-channel
  - → Several measurements competitive and *complementary* to LHC program
  - → Tension with Standard Model (A<sub>FB</sub>) remains intriguing (NNLO computation anticipated)

Stay tuned for legacy measurements from the Tevatron <u>http://www-cdf.fnal.gov/physics/new/top/top.html</u> <u>http://www-d0.fnal.gov/Run2Physics/top/top\_public\_web\_pages/</u>

Top results from D0 - Oleg Brandt (this afternoon)

# TevatronImpact



#### Accelerator Innovations

- First major SC synchrotron
- Industrial production of SC cable (MRI)
- Electron cooling
- New RF manipulation techniques



#### Detector innovations

- Silicon vertex detectors in hadron environment
- LAr-U238 hadron calorimetry
- Advanced triggering





#### Analysis Innovations

- Data mining from Petabytes of data
- Use of neural networks, boosted decision trees
- Major impact on LHC planning and developing
- GRID pioneers

#### Major discoveries

- Top quark
- B<sub>s</sub> mixing
- Precision W and Top mass → Higgs mass prediction
- Direct Higgs searches
- Ruled out many exotica



# The next generation

- Fantastic training ground for next generation
- More than 500
   Ph.D.s
- Produced critical personnel for the next steps, especially LHC

Bernd Stelzer, SFU

**PLHC 2012** 

25



| Bernd | Stelzer, | SFU |
|-------|----------|-----|
|-------|----------|-----|



#### Forward-Backward Top Asymmetry, %

# A<sub>FB</sub> over Time

- Look at the background-subtracted asymmetry as a function of the number of events
  - Verify robustness over time
  - "0 events" = start of Run II

- Modeling of pT(tt)
  - Unfolded spectrum in good agreement with NLO prediction



| Bernd Stelzer, SFU | PLHC 2012 |  |
|--------------------|-----------|--|
|--------------------|-----------|--|

