

Search for Contact Interaction in dilepton events from pp collisions at $\sqrt{s} = 7$ TeV with the **ATLAS** detector

Physics at the LHC - Vancouver 2012

Introduction

Contact Interaction (CI) can describe large extra dimensions in the ADD model¹ or quark/lepton compositeness²

- Λ Contact Interaction scale
- Fermions bound below Λ
- Effective lagrangian³ in neutral current interaction

 $\mathcal{L} = \frac{g^2}{2\Lambda^2} \begin{bmatrix} \eta_{LL} & \overline{\psi}_L \gamma_\mu \psi_L & \overline{\psi}_L \gamma^\mu \psi_L \\ + \eta_{RR} & \overline{\psi}_R \gamma_\mu \psi_R & \overline{\psi}_R \gamma^\mu \psi_R \end{bmatrix}$ $+2\eta_{LR}\overline{\psi}_L\gamma_\mu\psi_L\overline{\psi}_R\gamma^\mu\psi_R$]

• Events:

→Single lepton trigger

• Electron candidates:

- →p_T > 25 GeV
- →shower shape and leakage cuts tracking quality cuts
- →calorimeter isolation on leading electron

- 2 \rightarrow 2 scattering cross-section with CI term in dilepton final states - Assuming left-left isoscalar model ($|\eta_{LL}| = 1, \eta_{RR} = \eta_{LR} = \eta_{RL} = 0$)

Muon candidates:

⇒p_T > 25 GeV

- tracking and spectrometer quality cuts
- ➡ constrained impact parameter

⇒isolated muons

→opposite sign pairs

Background Estimates & Systematics

Statistical Analysis

Bayesian Method - BAT⁴

- QCD from data driven method
- Mass dependent QCD & EW K-factors for DY

◆ Systematics:

✦ Backgrounds:

- Mass independent systematics do not contribute
- Electron identification is 1.5% effect
- Muon reconstruction is up to 4.5% at 1.5 TeV mass
- 5% uncertainty due to $Z/\gamma^* \sigma$
- PDF and α_s contribute 10% at 1.5 TeV mass
- QCD & EW K-factors 3% & 5% at 1.5 TeV

$$\mu = n_{\rm DY+CI}(\theta, \bar{\nu}) + n_{\rm non-DY \ bg}(\bar{\nu})$$

$$\mathcal{L}(\bar{n} \mid \theta, \bar{\nu}) = \prod_{k=1}^{N} \frac{\mu_k^{n_k} e^{-\mu_k}}{n_k!}$$

$$\mathcal{P}(\theta \mid \bar{n}) = \frac{1}{\mathcal{Z}} \mathcal{L}_{\mathcal{M}}(\bar{n} \mid \theta) P(\theta)$$

$$Prior: \quad P(\theta) = \frac{1}{\Lambda^2}$$

[4] A. Caldwell, D. Kollar, and K. Kroninger, Computer Phys. Comm. 180 2197 (2009)

Λ: 95% CL Lower Limits

RESULT⁵

Channel	Prior	Expected limit (TeV)		Observed limit (TeV)	
		Constr.	Destr.	Constr.	Destr.
e^+e^-	$1/\Lambda^2$	9.6	9.3	10.1	9.4
	$1/\Lambda^4$	8.9	8.6	9.2	8.6
$\mu^+\mu^-$	$1/\Lambda^2$	8.9	8.6	8.0	7.0
	$1/\Lambda^4$	8.3	7.9	7.6	6.7
Comb.	$1/\Lambda^2$	10.4	10.1	10.2	8.8
	$1/\Lambda^4$	9.6	9.4	9.4	8.4

[5] ATLAS Collaboration, Phys. Lett. B 712 40-58 (2012)

Vikas Bansal, University of Victoria, British Columbia, on behalf of the ATLAS Collaboration