| Introduction | FCNC | Top mass | Wtb vertex | Charge asymmetry | Spin correlation | Summary |
|--------------|------|----------|------------|------------------|------------------|---------|
|              |      |          |            |                  |                  |         |
|              |      |          |            |                  |                  |         |
|              |      |          |            |                  |                  |         |
|              |      |          |            |                  |                  |         |

# Measurement of top quark properties at the ATLAS experiment

A. Knue on behalf of the ATLAS collaboration

Physics at the LHC 2012

Vancouver, 04-09th June



|     | troduction | FCNC | Top mass | Wtb vertex | Charge asymmetry | Spin correlation | Summary |
|-----|------------|------|----------|------------|------------------|------------------|---------|
|     |            |      |          |            |                  |                  |         |
|     |            |      |          |            |                  |                  |         |
|     |            |      |          |            |                  |                  |         |
| 1   | N . I .    |      |          |            |                  |                  |         |
|     | Jutline    |      |          |            |                  |                  |         |
| · · |            |      |          |            |                  |                  |         |

- Introduction
- 2  $t\bar{t}\gamma$  cross section
- ③ FCNC:
  - in  $t\overline{t}$  decays
  - in single top production
- ④ Top quark mass
- Studies of the Wtb vertex
- G Charge asymmetry
- Ø Spin correlation
- Summary

| Introduction |       | FCNC    | Top mass  | Wtb vertex | Charge asymmetry | Spin correlation | Summary |
|--------------|-------|---------|-----------|------------|------------------|------------------|---------|
|              |       |         |           |            |                  |                  |         |
| The to       | p qua | ark and | d its pro | operties   |                  |                  |         |

#### Why is the top quark special?

- → heaviest quark ( $m_{\rm top} = 173.2 \pm 0.9$  GeV)
- ightarrow Yukawa coupling  $\sim 1$
- ➔ decays before forming bound states

#### Why study its properties?

- → top mass is a fundamental parameter
- ➔ look for new physics



| Introduction | FCNC | Top mass | Wtb vertex | Charge asymmetry | Spin correlation | Summary |
|--------------|------|----------|------------|------------------|------------------|---------|
|              |      |          |            |                  |                  |         |
|              |      |          |            |                  |                  |         |

# Overview of analyses

Top mass Wtb vertex Charge asymmetry  $t\bar{t}\gamma$ 





Wtb vertex Spin correlation Charge asymmetry

- → + FCNC in  $t\bar{t}$  decays, FCNC in single top production
- $\clubsuit$  all analyses: only **leptonically decaying taus** considered in signal

| Introduction | $t\bar{t}\gamma$ | FCNC | Top mass | Wtb vertex | Charge asymmetry | Spin correlation | Summary |
|--------------|------------------|------|----------|------------|------------------|------------------|---------|
|              |                  |      |          |            |                  |                  |         |
|              |                  |      |          |            |                  |                  |         |
|              |                  |      |          |            |                  |                  |         |

# $t\bar{t}\gamma$ cross section

- test EM coupling to the top quark
- search for  $t\bar{t}$  + prompt photon: E<sub>T,\gamma</sub> > 15 GeV
  - → measure cross section
- prompt photons: isolated
  - ➔ distinguish from hadron fakes
- data driven bkg estimates



5/18



#### Main systematics:

ISR/FSR, JES, Photon ID eff:  $\sim$  0.3 pb

#### **Result:**

 $\sigma_{t \overline{t} \gamma} = 2.0 \pm 0.50 \, ( ext{stat.}) \pm 0.70 \, ( ext{syst.}) \\ \pm 0.08 \, ( ext{lumi}) \, \, ext{pb}$ 

+ significance: 2.7  $\sigma$ 

# FCNC in $t\bar{t} \rightarrow WbZq \rightarrow I^+I^-I'\nu_{l'}qb$

• SM BR(t  $\rightarrow$  qZ):  $\sim$  10  $^{-14}$  (hep-ph/0409342)

- deviation from SM: new physics
- ➡ e.g. quark singlet model (hep-ph/0210112)
- 3 identified leptons (3ID)
- or: 2ID + track lepton (TL)
- → 22 % increase in signal acc.



|                             |        | 3H    | )          | 2      | ID+ | TL           |
|-----------------------------|--------|-------|------------|--------|-----|--------------|
| ZZ and $WZ$                 | 9.5    | ±     | 4.4        | 1.0    | ±   | $0.5 \\ 0.6$ |
| $t\bar{t}W$ and $t\bar{t}Z$ | 0.51   | $\pm$ | 0.14       | 0.25   | ±   | 0.05         |
| $t\bar{t}, WW$              | 0.07   | $\pm$ | 0.02       |        |     |              |
| Z+jets                      | 1.7    | $\pm$ | 0.7        | 7.6    |     | 0.0          |
| Single top                  | 0.01   | $\pm$ | 0.01       | 1.0    | T   | 2.2          |
| 2+3 fake leptons            | 0.0    | $\pm$ | 0.2<br>0.0 |        |     |              |
| Expected background         | 11.8   | ±     | 4.4        | 8.9    | ±   | 2.3          |
| Data                        | 8      |       |            | 8      |     |              |
| Signal efficiency           | (0.205 | ±     | 0.024)%    | (0.045 | ±   | 0.007)%      |

#### Main systematics:

- 3ID: ZZ+WZ gen.,  $\sigma_{
  m t\bar{t}}$ , JES
- 2ID+1TL:  $\sigma_{t\bar{t}}$ , fake leptons, ISR/FSR

No evidence found, set limit (comb.):

$$\mathsf{BR}(\mathsf{t}\to\mathsf{qZ})<0.73~\%~(2.1~\mathsf{fb}^{-1})$$

| Introduction | FCNC | Top mass | Wtb vertex | Charge asymmetry | Spin correlation | Summary |
|--------------|------|----------|------------|------------------|------------------|---------|
|              |      |          |            |                  |                  |         |
|              |      |          |            |                  |                  |         |
|              |      |          |            |                  |                  |         |

# FCNC in single top production

- ${\small \bullet}\,$  in SM: BR(t  ${\small \rightarrow}$  qg)  ${\displaystyle \sim}\,10^{-13}$
- search for non-SM processes
- difficult to separate from multijet bkg:
  - $\rightarrow$  look at single top **production**

• qg  $\rightarrow$  t  $\rightarrow$  W( $\rightarrow$  I $\nu$ )b



### Most significant variables for NN:

- p<sup>W</sup><sub>T</sub>
- ΔR(bjet,lepton)
- Lepton charge



No evidence found, set limit:

•  $\sigma <$  3.9 pb @ 95 % CL

• BR(t 
$$\rightarrow$$
 ug)  $< 5.7 \cdot 10^{-5}$ 

• BR(t  $\rightarrow$  cg) < 2.7  $\cdot 10^{-4}$ 

| Introduction | FCNC | Top mass | Wtb vertex | Charge asymmetry | Spin correlation | Summary |
|--------------|------|----------|------------|------------------|------------------|---------|
|              |      |          |            |                  |                  |         |

# Top mass: lepton+jets

- ➔ 2D template fit
- → hadronically decaying W: constrain JES

 $\clubsuit$  simultaneous measurement of  $m_{\rm top}$  and JSF via LH fit to data (templates from MC)

#### Mass in lepton+jets channel:

- $m_{\rm top}$  = 174.5  $\pm$  0.6 (stat.)  $\pm$  2.3 (syst.) GeV
- → 1D template fit with  $R_{32} = \frac{m_{top}^{reco}}{m_{W}^{reco}}$ (developed at ATLAS)
- ➔ helps to reduce JES

#### Mass for 1D method:

 $m_{\rm top}$  = 174.4  $\pm$  0.9 (stat.)  $\pm$  2.5 (syst.) GeV



| Introduction | FCNC | Top mass | Wtb vertex | Charge asymmetry | Spin correlation | Summary |
|--------------|------|----------|------------|------------------|------------------|---------|
|              |      |          |            |                  |                  |         |
|              |      |          |            |                  |                  |         |
|              |      | -        |            |                  |                  |         |

# Top mass: all hadronic

- at least 6 jets with  $p_T > 30 \text{ GeV}$
- at least 5 jets with p<sub>T</sub> > 55 GeV
- 2 b-tags
- reconstruction via  $\chi^2$  fit
- $\bullet\,$  rescale light jets with  $m_{\rm W}/m_{\rm W}^{\rm reco}$
- $\bullet~f_{\rm Sig}$  and  $m_{\rm top}~$  are free parameters

#### Main systematics:

- ISR/FSR: 1.7 GeV
- Bkg model: 1.9 GeV
- JES: 2.1 GeV
- b-JES: 1.4 GeV



#### Final result:

 $m_{\rm top}{=}$  174.9  $\pm$  2.1 (stat.)  $\pm$  3.8 (syst.) GeV

➔ in agreement with result from lepton+jets channel

| Introduc | tion   |     | FCNC | Top mass | Wtb vertex | Charge asymmetry | Spin correlation | Summary |
|----------|--------|-----|------|----------|------------|------------------|------------------|---------|
|          |        |     |      |          |            |                  |                  |         |
| Wt       | b vert | tex |      |          |            |                  |                  |         |



- Iepton+jets/dilepton
- observable: angular distribution of charged lepton in rest frame of W boson
- two sets of observables:
  - helicity fractions (template fit)
  - angular asymmetries (count events)



| Introduction | FCNC | Top mass | Wtb vertex | Charge asymmetry | Spin correlation | Summary |
|--------------|------|----------|------------|------------------|------------------|---------|
|              |      |          |            |                  |                  |         |
|              |      |          |            |                  |                  |         |
|              |      |          |            |                  |                  |         |

# Wtb vertex



#### Final result:

- $\begin{array}{l} F_0 = 0.67 \pm 0.07 \\ F_{\rm L} = 0.32 \pm 0.04 \\ F_{\rm R} = 0.01 \pm 0.05 \end{array}$
- → dominated by JES, fake lept., ISR/FSR
- ightarrow agrees with SM expectations

→ most precise measurement

$$\mathcal{L}_{Wtb} = -\frac{g}{\sqrt{2}} \bar{b} \gamma^{\mu} \left( V_{\rm L} P_L + \frac{V_{\rm R}}{P_R} \right) t \ W^{-}_{\mu} - \frac{g}{\sqrt{2}} \bar{b} \frac{i\sigma^{\mu\nu} q_{\nu}}{M_W} \left( g_{\rm L} P_L + g_{\rm R} P_R \right) t \ W^{-}_{\mu} + \text{h.c.}$$

More limits (backup):

- → set all but one coupling to zero
- $\blacktriangleright$  set  $F_R = 0$



| Introduction | FCNC | Top mass | Wtb vertex | Charge asymmetry | Spin correlation | Summary |
|--------------|------|----------|------------|------------------|------------------|---------|
|              |      |          |            |                  |                  |         |
|              |      |          |            |                  |                  |         |
|              |      |          |            |                  |                  |         |

subtract bkg

# Charge asymmetry: lepton+jets

expect small asymmetry: → g radiation from IS or FS → interference of Feynman diagr. LHC top anti-top •  $A_C = \frac{N(\Delta|y|>0) - N(\Delta|y|<0)}{N(\Delta|y|>0) + N(\Delta|y|<0)}$ Bayesian unfolding l/σ dσ/d ∆lv 0.35 ATLAS dt = 1.04 fb<sup>-1</sup> 0.25 0.2 0.15 0.1 0.05 0,3 -2 -1 0 1  $\Delta |\mathbf{y}|$ 

12/ 18



Main systematics:

→ ISR/FSR, JES, Signal model ~ 0.010

#### **Final result:**

 $A_C = -0.018 \pm 0.028$  (stat.)  $\pm 0.023$  (syst.)  $(MC@NLO: 0.006 \pm 0.002)$ 

| Introduction | FCNC | Top mass | Wtb vertex | Charge asymmetry | Spin correlation | Summary |
|--------------|------|----------|------------|------------------|------------------|---------|
|              |      |          |            |                  |                  |         |
|              |      |          |            |                  |                  |         |

# Charge asymmetry: mass dependence

#### **CDF** result:

13/18

- measured A<sub>FB</sub> for m<sub>ttbar</sub> > 450 GeV: significance: 3.4 σ (arXiv:1101.0034v1)
- possible explanations: flavour changing Z'





#### **Conclusion:**

- ATLAS measurement of A<sub>C</sub> is in agreement with SM
- disfavours a model with flavour changing Z'
- → new CDF result: still large asymmetry, but with lower significance (CDF Note 10807)

#### Two observables:

- → measure  $A_{\rm C}^{\rm t\bar{t}}$  as in lepton+jets
- → measure  $A_{\rm C}^{\rm ll} = \frac{N(\Delta|\eta|>0) N(\Delta|\eta|<0)}{N(\Delta|\eta|>0) + N(\Delta|\eta|<0)}$
- $\bullet \Delta |\eta| = |\eta_{I^+}| |\eta_{I^-}|$
- $\blacktriangleright$  SM prediction:  $A_{\rm C}^{\rm t\bar{t}}=0.006\pm0.002$   $A_{\rm C}^{\rm ll}=0.004\pm0.001$



- → reconstruct full event using the  $gg \rightarrow t\bar{t}$  matrix element
- ➔ subtract background
- → correct distribution with calibration curves
- → main Systematics: ISR/FSR, Signal modelling, fake lepton

Lepton based asymmetry:

$${\sf A}_{
m C}^{
m ll}=0.023\pm 0.012$$
 (stat.)  $\pm$  0.008 (syst.)

Top based asymmetry:

 $A_{\rm C}^{\rm t\bar{t}} = 0.057 \pm 0.024 \; ({\rm stat.}) \, \pm \, 0.015 \; ({\rm syst.})$ 

Combination with lepton+jets result:

 $A_{\rm C}^{\rm t\bar{t}}=0.029\pm0.018$  (stat.)  $\pm$  0.014 (syst.)

 $\blacktriangleright$  No deviation from SM has been found.

| Introduction |        | FCNC | Top mass | Wtb vertex | Charge asymmetry | Spin correlation | Summary |
|--------------|--------|------|----------|------------|------------------|------------------|---------|
|              |        |      |          |            |                  |                  |         |
|              |        |      |          |            |                  |                  |         |
| _            |        |      |          |            |                  |                  |         |
| Spin a       | arrala | tion |          |            |                  |                  |         |
| SDILL C      | Jrreia | lion |          |            |                  |                  |         |

- tops decay before hadronization
- spins of tops are correlated:

 $\mathsf{A} = \frac{\mathsf{N}(\uparrow\uparrow) + \mathsf{N}(\downarrow\downarrow) - \mathsf{N}(\uparrow\downarrow) - \mathsf{N}(\downarrow\uparrow)}{\mathsf{N}(\uparrow\uparrow) + \mathsf{N}(\downarrow\downarrow) + \mathsf{N}(\uparrow\downarrow) + \mathsf{N}(\downarrow\uparrow)}$ 

• depends on quark/gluon fraction  $(\sqrt{s})$ 

#### Parton level distribution:





- measure A in helicity and in max. basis SM:  $A_{\rm hel}=$  0.31,  $A_{\rm max}=$  0.44

#### **Observable:**

- $\Delta \phi$ (lepton,lepton)
- → no full event reconstruction

| Introduction |        | FCNC | Top mass | Wtb vertex | Charge asymmetry | Spin correlation | Summary |
|--------------|--------|------|----------|------------|------------------|------------------|---------|
|              |        |      |          |            |                  |                  |         |
|              |        |      |          |            |                  |                  |         |
| Spin co      | orrela | tion |          |            |                  |                  |         |

- $\mathsf{A}^{\rm meas}_{\rm basis} = \mathsf{A}^{\rm SM}_{\rm basis} \cdot \, \mathsf{f}^{\rm SM}$
- $f^{\rm SM} < 0$ : anti-correlation
- $f^{\rm SM} = 0$ : no correlation
- $f^{\rm SM} > 1$ : correlation > SM prediction
- ${\small \circ \,}$  SM:  $A_{\rm hel}=0.31,~A_{\rm max}=0.44$



#### **Dominating uncertainties:**

- Statistics: 0.14
- JES/JER: 0.12
- Fake lepton: +0.16/-0.07
- Signal modelling: 0.11

# Results: $f^{SM}$ = 1.30 ± 0.14 (stat.) $^{+0.27}_{-0.22}$ (syst.) $\checkmark$ $A_{hel}^{meas}$ = 0.40 ± 0.04 (stat.) $^{+0.08}_{-0.07}$ (syst.) $A_{max}^{meas}$ = 0.57 ± 0.06 (stat.) $^{+0.12}_{-0.10}$ (syst.)

+ First observation of spin correlation: 5.1  $\sigma$ 

| Introduction |        | FCNC   | Top mass    | Wtb vertex | Charge asymmetry | Spin correlation | Summary |
|--------------|--------|--------|-------------|------------|------------------|------------------|---------|
|              |        |        |             |            |                  |                  |         |
|              |        |        |             |            |                  |                  |         |
|              |        |        | <b>DCLI</b> |            |                  |                  |         |
| More or      | i sear | ches t | or RSM      | nhysics    | in ton eve       | ntc              |         |
|              | i Scar | CHC3 I |             |            |                  |                  |         |

- $t\bar{t}$  events with large  $E_T^{miss}(1.04 \text{ fb}^{-1})$ :
  - Phys.Rev.Lett. 108 (2012) 041805
- $t\overline{t}$  resonances
  - lepton+jets (2.05 fb<sup>-1</sup>): arXiv:1205.5371v1
  - dilepton (2.04 fb<sup>-1</sup>): ATLAS-CONF-2011-123
  - ➔ Poster from Michele Petteni
  - → Talk by Till Eifert (Friday, 12:35 pm)
- Search for down-type fourth generation quarks

  - 1.04 fb<sup>-1</sup>: JHEP 04 (2012) 069
  - ➔ Poster from Dennis Wendland
  - → Talk by Till Eifert (Friday, 12:35 pm)

| Introduction |     | FCNC | Top mass | Wtb vertex | Charge asymmetry | Spin correlation | Summary |
|--------------|-----|------|----------|------------|------------------|------------------|---------|
|              |     |      |          |            |                  |                  |         |
|              |     |      |          |            |                  |                  |         |
| Summ         | ary |      |          |            |                  |                  |         |

- thousands of top quarks have been produced at the LHC
  - ➔ precision measurements of top properties
- most analyses are limited by systematics
  - $\rightarrow$  crucial to understand and reduce them
- all measurements are consistent with the SM predictions
- most precise measurement of W-helicity fractions
- First observation of spin correlation!

# Backup slides

# Event selection



# Event selection



19/18

- Top properties at ATLAS -

Andrea Knue

# Event selection



19/18

- Top properties at ATLAS -

Andrea Knue

# Top reconstruction

#### Kinematic likelihood fit

$$\begin{split} L &= \mathcal{T} \left( E_{\mathrm{jet}_1} | \hat{E}_{b_{\mathrm{had}}} \right) \cdot \mathcal{T} \left( E_{\mathrm{jet}_2} | \hat{E}_{b_\ell} \right) \cdot \mathcal{T} \left( E_{\mathrm{jet}_3} | \hat{E}_{q_1} \right) \\ & \mathcal{T} \left( E_{\mathrm{jet}_4} | \hat{E}_{q_2} \right) \cdot \mathcal{T} \left( E_x^{\mathrm{miss}} | \hat{p}_{x,\nu} \right) \cdot \mathcal{T} \left( E_y^{\mathrm{miss}} | \hat{p}_{y,\nu} \right) \\ & \left\{ \begin{array}{c} \mathcal{T} \left( E_e | \hat{E}_e \right) & e{+} \mathrm{jets} \\ \mathcal{T} \left( p_{\mathrm{T},\mu} | \hat{p}_{\mathrm{T},\mu} \right) & \mu{+} \mathrm{jets} \end{array} \right\} \\ & \mathcal{B} \left[ m(q_1 \, q_2) | m_W, \Gamma_W \right] \cdot \mathcal{B} \left[ m(\ell \, \nu) | m_W, \Gamma_W \right] \cdot \\ & \mathcal{B} \left[ m(q_1 \, q_2 \, b_{\mathrm{had}}) | m_{\mathrm{top}}^{\mathrm{reco,like}}, \Gamma_{\mathrm{top}} \right] \cdot \\ & \mathcal{B} \left[ m(\ell \, \nu \, b_\ell) | m_{\mathrm{top}}^{\mathrm{rec,like}}, \Gamma_{\mathrm{top}} \right] \cdot W_{\mathrm{btag}} \, . \end{split}$$



#### **Reco via a** $\chi^2$ **fit (example: hadronic top mass)**

$$\chi^{2} = \frac{(m_{j1,j2} - m_{W})^{2}}{\sigma_{W}^{2}} + \frac{(m_{j1,j2,b1} - m_{t})^{2}}{\sigma_{t}^{2}} + \frac{(m_{j3,j4} - m_{W})^{2}}{\sigma_{W}^{2}} + \frac{(m_{j3,j4,b2} - m_{t})^{2}}{\sigma_{t}^{2}}$$

with  $\sigma_W = 10.2~{
m GeV}$ ,  $\sigma_t = 17.4~{
m GeV}$ 

# Event reconstr. (dilepton channel, charge asymm)

#### **Problem:**

- ightarrow have final state with two neutrinos
- $\rightarrow$  need to fully reconstruct event
- ➔ 16 equations to solve
- → 22 unknowns to determine

#### What do we know?

- → have 16 measured quantities
- → fix W and top mass to WA
- ➔ add equations:
  - MET balance in transverse plane
  - tt̄-pT

#### Idea:

- → vary 4 momentum of objects (width, resolution)
- $\rightarrow$  if solution: calculate weight:

$$\rightarrow \frac{(2\pi)^4}{\epsilon_1 \epsilon_2 s} d\epsilon_1 d\epsilon_2 f_{PDF}(\epsilon_1) f_{PDF}(\epsilon_2) |\mathcal{M}(y)|^2 W(x,y) d\Phi_n$$

#### Finally:

- → for each permutation of jets: phase space sampling  $(10^4-10^5 \text{ points}, \text{ use Vegas})$
- ➔ each point: calculate number of solutions

→ calculate weight 
$$y^{k} = \frac{\sum_{j=1}^{N^{sampl}} \sum_{i=1}^{N^{sol}_{j}} (w^{k}_{ij} y^{k}_{j})}{\sum_{j=1}^{N^{sampl}} \sum_{i=1}^{N^{sol}_{j}} w^{k}_{ij}}$$

→  $\epsilon_{\rm reco}$  for highest weight: 47 % (rdm: 30 %)

# Top mass: 1D template fit

- $R_{32} = \frac{m_{top}^{reco}}{m_{W}^{reco}}$
- Iess sensitive to JES
- ${\scriptstyle \bullet}\,$  jets for hadronic top:  $p_T{>}$  40 GeV
- In L > -50
- reconstruction: kinematic likelihood
- template fit





#### Main systematics:

- ISR/FSR: 1.42 GeV
- JES: 1.23 GeV
- b-JES: 1.16 GeV

#### Final result:

 $m_{top}$ = 174.4 ± 0.9 (stat.) ± 2.5 (syst.) GeV  $\rightarrow$  in agreement with result from 2D method

# Top mass: all hadronic

- ATLAS-CONF-2011-030
- calculate  $m_{\rm jjb}$

23/18

perform template fit

Reconstructed distribution:

#### Jet selection:

- $\geq$  6(5) jets with  $p_T{>}$  30(55) GeV
- $|\eta(\text{jet})| < 4.5$ ,  $\Delta R(\text{jet}_i, \text{ jet}_j) > 0.6$
- ${\small \circ}$  2 b-tags: p\_T> 55 GeV,  $|\eta|<$  2.5
- $\Delta R(b_1, b_2) > 1.2$



#### **Procedure:**

- data driven estimate for multijet bkg
- reconstruction via  $\chi^2$  fit
- in reconstruction:  $m_{jj} \in [50, 110]$  GeV
- $\bullet\,$  rescale light jets with  $m_{\rm W}/m_{\rm W}^{\rm reco}$

#### Top properties at ATLAS –

# Top mass: all hadronic

- fit with five templates
- binned likelihood
- $\bullet~f_{\rm Sig}$  and  $m_{\rm top}~$  are free parameters
- use pseudo data for systematics



#### Systematic uncertainties:

| Source                         | Uncertainty [GeV] |
|--------------------------------|-------------------|
| Method                         | 0.4               |
| Template statistics            | 0.9               |
| MC generator                   | 0.5               |
| ISR/FSR                        | 1.7               |
| PDF                            | 0.6               |
| Background modelling           | 1.9               |
| Jet energy scale               | 2.1               |
| b-jet energy scale             | 1.4               |
| b-tag efficiency scale factors | 0.3               |
| Jet energy resolution          | 0.3               |
| Jet reconstruction efficiency  | 0.2               |
| Total systematic uncertainty   | 3.8               |

#### Final result:

 $m_{\rm top}{=}$  174.9  $\pm$  2.1 (stat.)  $\pm$  3.8 (syst.) GeV

 $\rightarrow$  in agreement with world average and result from lepton+jets channel

New physics processes can be modeled by effective Langrangian  $^1$  :

$$\mathcal{L}_{ ext{eff}} = \sum rac{C_x}{\Lambda^2} O_x + \dots$$

One of the six-dimension operators  $(C_{uW}^{33})$  can alter the helicity fractions:

$$F_{0} = \frac{m_{t}^{2}}{m_{t}^{2} + 2m_{W}^{2}} - \frac{4\sqrt{2}Re(C_{uW}^{33})v^{2}}{\Lambda^{2}V_{tb}} \frac{m_{t}m_{W}(m_{t}^{2} - m_{W}^{2})}{(m_{t}^{2} + 2m_{W}^{2})^{2}}$$
$$F_{L} = \frac{2m_{W}^{2}}{m_{t}^{2} + 2m_{W}^{2}} + \frac{4\sqrt{2}Re(C_{uW}^{33})v^{2}}{\Lambda^{2}V_{tb}} \frac{m_{t}m_{W}(m_{t}^{2} - m_{W}^{2})}{(m_{t}^{2} + 2m_{W}^{2})^{2}}$$

 $\rightarrow$  Assumption in model:  $F_R = 0$ 

- Top properties at ATLAS -

<sup>&</sup>lt;sup>1</sup>C. Zhang and S. Willenbrock, Effective-Field-Theory Approach to Top-Quark Production and Decay, Phys. Rev. D83 (2011) 034006; J.A. Aguilar-Saavedra, A minimal set of top anomalous couplings, Nucl. Phys B812 (2009) 181.

# Set limit on non-SM coupling (only template method)<sup>2</sup>

2D fit:  $F_0 = 0.66 \pm 0.05 (\text{stat.+syst.})$ 



 $\rightarrow$  No deviation from SM predictions has been found

<sup>2</sup>arXiv:1205.2484

- Top properties at ATLAS -

26/18

# Limit on anomalous couplings <sup>3</sup>

#### Set limits on $g_{\rm R}$ and $g_{\rm L}$ :

27/18

- ${\scriptstyle \bullet}$  assumption:  $V_{\rm R}=0$  and  $V_{\rm L}=1$
- combined angular asymmetries

$$\begin{array}{rcl} {\rm A}_+ & = & 0.53 \pm 0.02 \mbox{ (stat. + syst.)} \\ {\rm A}_- & = & -0.84 \pm 0.02 \mbox{ (stat. + syst.)} \end{array}$$

#### use helicity fractions to calculate anomalous couplings



# One dimensional limits on anomalous couplings <sup>4</sup>

#### Assuming only one non-vanishing coupling:

$$\begin{aligned} \operatorname{Re}(V_{R}) &\in [-0.20, 0.23] \to \frac{\operatorname{Re}(C_{\phi\phi}^{33})}{\Lambda^{2}} \in [-6.7, 7.8] \operatorname{TeV}^{-2} \\ \operatorname{Re}(g_{L}) &\in [-0.14, 0.11] \to \frac{\operatorname{Re}(C_{dW}^{33})}{\Lambda^{2}} \in [-1.6, 1.2] \operatorname{TeV}^{-2} \\ \operatorname{Re}(g_{R}) &\in [-0.08, 0.04] \to \frac{\operatorname{Re}(C_{uW}^{33})}{\Lambda^{2}} \in [-1.0, 0.5] \operatorname{TeV}^{-2} \end{aligned}$$

Conclusion for anomalous couplings:

couplings compatible with zero

<sup>&</sup>lt;sup>4</sup>arXiv:1205.2484

# Backup: spin correlation

#### **Dilepton selection**

- single lepton trigger
- exactly two leptons, opposite charge
- ee/ $\mu\mu$ :
  - $\circ~m_{\rm ll}>15$  GeV: remove  $\Upsilon,~J/\Psi$
  - $E_{\rm T}^{\rm miss}$  > 60 GeV: remove Z/ $\gamma$ +jets,W+jets

#### ● eµ:

- $\bullet$  H $_{
  m T} > 130$  GeV
  - $\rightarrow$  suppress  ${\rm Z}/\gamma \rightarrow \tau\tau$



# Backup: Charge asymmetry





- $\bullet\,$  LHC is symmetric: can measure  $A_{\rm C}$
- at LHC: much more gg-fusion
  - → expect only small asymmetry



# Backup: $t\bar{t}\gamma$ cross section

#### Templates

- signal (from  $Z \rightarrow ee$ )
- hadron fakes
- electron fakes (from Z  $\rightarrow$  ee)
- on-tt̄ bkg
- bkg  $t\overline{t}\gamma$

#### Fake rate $\mathbf{e} \rightarrow \gamma$





| fit parameter                                                       | fit value | with sta | tistical uncertainty |
|---------------------------------------------------------------------|-----------|----------|----------------------|
| hadron fakes in the e+jets channel                                  | 21        | ± 6      | events               |
| hadron fakes in the $\mu$ +jets channel                             | 28        | ± 8      | events               |
| electrons faking photons from $t\bar{t}$ in the $e$ +jets channel   | 7.4       | ± 1.7    | events               |
| electrons faking photons from $t\bar{t}$ in the $\mu$ +jets channel | 10.9      | ± 2.2    | events               |
| $t\bar{t}\gamma$ background in the e+jets channel                   | 0.2       |          | events               |
| $t\bar{t}\gamma$ background in the $\mu$ +jets channel              | 0.4       |          | events               |
| non-tī background in the e+jets channel                             | 6.7       |          | events               |
| non- $t\bar{t}$ background in the $\mu$ +jets channel               | 3.8       |          | events               |
| total number of background events                                   | 78        | ± 14     | events               |
| total number of signal events                                       | 46        | ± 12     | events               |
| $t\bar{t}\gamma$ signal (before selection and acceptance cuts)      | 2100      | ± 500    | events               |

# Backup: FCNC t $\rightarrow$ qZ

#### Theoretical values for BR for SM and beyond SM scenarios

| Process                 | SM                    | QS                   | 2HDM           | FC 2HDM         | MSSM               | ₿ SUSY             | TC2            | RS              |
|-------------------------|-----------------------|----------------------|----------------|-----------------|--------------------|--------------------|----------------|-----------------|
| $t \rightarrow u\gamma$ | $3.7 \times 10^{-16}$ | $7.5 \times 10^{-9}$ |                | _               | $2 \times 10^{-6}$ | $1 \times 10^{-6}$ | _              | $\sim 10^{-11}$ |
| $t \rightarrow uZ$      | $8 \times 10^{-17}$   | $1.1 \times 10^{-4}$ |                |                 | $2 \times 10^{-6}$ | $3 \times 10^{-5}$ | _              | $\sim 10^{-9}$  |
| $t \rightarrow ug$      | $3.7 \times 10^{-14}$ | $1.5 \times 10^{-7}$ | -              | -               | $8 \times 10^{-5}$ | $2 \times 10^{-4}$ | _              | $\sim 10^{-11}$ |
| $t \rightarrow c\gamma$ | $4.6 \times 10^{-14}$ | $7.5 \times 10^{-9}$ | $\sim 10^{-6}$ | $\sim 10^{-9}$  | $2 \times 10^{-6}$ | $1 \times 10^{-6}$ | $\sim 10^{-6}$ | $\sim 10^{-9}$  |
| $t \rightarrow cZ$      | $1 \times 10^{-14}$   | $1.1 \times 10^{-4}$ | $\sim 10^{-7}$ | $\sim 10^{-10}$ | $2 \times 10^{-6}$ | $3 \times 10^{-5}$ | $\sim 10^{-4}$ | $\sim 10^{-5}$  |
| $t \rightarrow cg$      | $4.6 \times 10^{-12}$ | $1.5 \times 10^{-7}$ | $\sim 10^{-4}$ | $\sim 10^{-8}$  | $8 \times 10^{-5}$ | $2 \times 10^{-4}$ | $\sim 10^{-4}$ | $\sim 10^{-9}$  |

#### Experimental limits on BR @ 95 % C.L. (without CMS result)

|                             | LEP          | HERA             | Tevatron                                                  |
|-----------------------------|--------------|------------------|-----------------------------------------------------------|
| $BR(t \rightarrow q\gamma)$ | 2.4% [25-29] | 0.64% (tuy) [30] | 3.2% [31]                                                 |
| $BR(t \rightarrow qZ)$      | 7.8% [25-29] | 49% (tuZ) [32]   | 3.2% [33]                                                 |
| $BR(t \rightarrow qg)$      | 17% [34]     | 13% [32, 35, 36] | $2.0 \times 10^{-4} (tug), 3.9 \times 10^{-3} (tcg) [37]$ |

# Backup: FCNC in single top production

#### Most significant variables for neural network



| Process          | Expected events |      |      |  |  |
|------------------|-----------------|------|------|--|--|
| SM single top    | 1460            | ±    | 150  |  |  |
| tī               | 660             | ±    | 70   |  |  |
| W+light jets     | 4700            | ±    | 1100 |  |  |
| Wbb/Wcc+jets     | 2700            | ±    | 1500 |  |  |
| Wc + jets        | 12100           | ±    | 6700 |  |  |
| Z+jets/diboson   | 700             | ±    | 170  |  |  |
| Multijet         | 1600            | ±    | 800  |  |  |
| Total background | 24000           | ±    | 7000 |  |  |
| Observed         | 2               | 6223 |      |  |  |

#### Further variables:

- $m_{top}, m_{bjet}, \eta_{bjet}$
- $\Delta \Phi(W,bjet)$ ,  $p_T^{lep}$ ,  $p_T^{bjet}$
- $\cos \Theta^*$ ,  $\Delta R(W, bjet)$

#### Reconstruction:

- exactly one jet
- neutrino  $p_z$  from constraint on  $m_W$
- two results: take smallest value

- Top properties at ATLAS -

# Reducing ISR/FSR uncertainties

#### How was it evaluated in 2011 analyses?

- user AcerMC+Pythia, using Perugia HARD/SOFT tunes for ISR/FSR  $\rightarrow$  not based on LHC data
- six samples: ISR up/down, FSR up/down, ISR & FSR up, ISR & FSR down
- take half of the largest difference between two samples

#### What was changed for 2012 (2011 data)?

- now: set ISR/FSR parameters based on LHC data
- ISR: constrain variation using jet gap fraction info in dil. events
- ${\scriptstyle \bullet}\,$  FSR: tune parameters  ${\rightarrow}\,$  describe jet shapes in QCD events
- have two samples with more/less parton shower activity (AcerMC+Pythia)