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The speaker expresses the his thanks 
for the sources of many slides showing 
these results.   
1. From PHENIX, thanks to Mike Leitch 
and Matt Durham.  
2. From STAR, thanks to Xin Dong. 



1. Review quarkonia studies at RHIC.  
 Sorry, can’t be done in one talk.  Well, at least not by me! 

2. PHENIX and STAR detectors have many results, but are becoming more 
sophisticated, so expect much more to come. 

3. RHIC has unique abilities to collide different species, such as Cu-Au. 

   Comment: 
Many of these measurement lie in the area of non-perturbative QCD. 
I have a strong bias that we MUST make these type of measurements. 

Only if we accumulate a high quality data set do we provide the basis for a 
rigorous explanation for WHY we find these results. 

  (Probably by a young physicist, untainted by the  
“We can’t calculate that,” mantra.) 

 Theory can guide us, but it can also bias us. 
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Outline 



The starting point of 
the study of just 

exactly how protons, 
neutrons, and nuclei 

are made. 

How to put a nucleus together. 
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RHIC Facility at Brookhaven National Lab 
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PHENIX as set up in RUN 12 



We have some things we would really like to have in a detector. 
Accessibility - Ease of operation - Ease of calibration - Ease of trouble shooting 

But we are often dealing with detectors that are more like this.  

The reality is that there are a number of very talented, hard 
working people who manage do get things working and get the 

physics results.  

If we can make it hard on the theorists, hopefully it is because 
the physics is done right! 

Collaboration internal reports. Reports to outsiders. 
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How you feel 
working on it 
after you put 
it together 
sometimes. 
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For the hot-dense medium (QGP) created in A+A collisions 
•  Large quark energy loss in the medium implies high densities 
•  Flow scales with number of quarks 
•  Is there deconfinement? → Quarkonia screening?? 

Satz, J.Phys.G32:R25,2006   
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Quarkonia Suppression in A+A Collisions – Screening 

Matsui and Satz, Phys. Lett. B 178 (1986) 416: 
   “If high energy heavy ion collisions lead to the formation of a hot quark-gluon 
plasma, then colour screening prevents ccbar binding in the deconfined interior of 
the interaction region …  … It is concluded that J/Ψ suppression in nuclear collisions 
should provide an unambiguous signature of quark-gluon plasma formation.” 

Debye screening predicted to destroy J/ψ’s in a QGP with other states 
“melting” at different temperatures due to different sizes or binding energies. 

T/Tc 

λ D
(f

m
)  



J/ψ production in the heavy ion collisions 

Quarkonia suppression – color screening: “classic” QGP signature 
Multiple mechanisms will influence J/ψ production in heavy ion collisions: 
       Initial production (and nuclear shadowing) 
       Suppression due to cold nuclear absorption 
       Recombination from sQGP medium … 

RAA increases with pT, and is smaller in central collisions   
               - start to probe initial sQGP suppression at high pT? 
v2 is consistent with 0 
               - disfavor J/ψ is produced via recombination from thermalized charm quarks 9 

Slide provided by STAR – The speaker thanks Xin Dong! 



At RHIC - Forward-rapidity J/ψ’s are 
suppressed more than Mid-rapidity – Why? 

Looking at the Suppression at a different rapidity – add PHENXIX muon detector  

 1) Stronger forward rapidity suppression due 
to CNM effects? 

 2) Regeneration at mid-rapidity reduces 
suppression relative to forward (and gives 
net suppression similar to SPS)? 

The upper left plot shows the value in having 
complementary detectors at RHIC. 

PHENIX arXiv:1103.6269 

Small or no J/ψ flow at RHIC! 

Many theoretical expectations 
& option #2 probably ruled 
out? 
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ψ’ & χc gone? (42±9%) 

forward/mid 

forward 

mid-rapidity 

STAR 
preliminary 
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Quarkonia Suppression in A+A Collisions – key observations and questions 

Overall suppression of J/ψ is very 
similar between: 
•  SPS (17.2 GeV)  
•  RHIC (200,62,39 GeV) 
•  and LHC (2.76 TeV) 
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62 GeV 39 GeV 

SPS 

PHENIX forward 

PHENIX y=0 

CMS: 
0 <|y|< 2.4 
pT > 6.5 

This in some ways 
complicates explanations. 
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Cold Nuclear Matter (CNM) effects appear to provide a large 
fraction of the observed suppression. 
•  So difficult to conclude much w/o a thorough understanding of CNM 
and its extrapolation to A+A from d+A.     Keeps us busy! 

Quarkonia Suppression in A+A Collisions – key observations and questions 

Probably have to understand CNM in a fundamental way in order to 
extrapolate to A+A correctly.  This should not come as a surprise! 

25-July-2012 12 Donald Isenhower - BEACH 2012 

y 

R d
A

u 

Npart 

R A
A

 



25-July-2012 Donald Isenhower - BEACH 2012 13 

Quarkonia Suppression in A+A Collisions – more observations and questions 

Recent Gluon Saturation (CGC) calculations (arXiv:1109.1250v1) also 
leave room for QGP effects in A+A collisions. 
•  However, they do not help explain the stronger suppression at 
forward rapidity in A+A. 

y=-1.7 

y=0 

y=1.7 

PHENIX y=1.7 

PHENIX y=0 

ALICE y~3.2 



Open charm hadrons – Probe the sQGP properties 

•  Charm hadron production cross section in p+p 
collisions is consistent with the upper bound of 
FONLL pQCD calculation. 
•  Charm cross section in A+A collisions 
approximately follows Nbin scaling. 
    Charm created from initial hard scatterings. 

Low pT:  interacting with bulk medium 
              – test medium thermalization 
High pT:  parton energy loss 
               mechanism in sQGP 

14 

Slide provided by STAR – The speaker thanks Xin Dong! 



J/ψ production mechanism in hadron collisions 

A wide range of pT coverage 
Multi observables:  
            cross section, polarization 

Constrain the production mechanism in 
hadron collisions 

Helicity frame 
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Slide provided by STAR – The speaker thanks Xin Dong! 

Note again the advantage of STAR showing 
the value of complementary detectors!  D.I. 



Traditional shadowing from fits to 
DIS or from coherence models 

high x low x 

Absorption (or dissociation) of       
into two D mesons by nucleus or co-
movers 

Energy loss of incident 
gluon shifts effective xF  
and produces nuclear 
suppression which 
increases with xF 

R(A/p) 
R=1 xF 

Gluon saturation from non-linear gluon 
interactions for the high density at 
small x - Amplified in a nucleus. 

p A 

25-July-2012 16 Donald Isenhower - BEACH 2012 

What are the CNM effects that are so strong in Quarkonia production? 

shadowing 

anti-shadowing 
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•  What kind of state is the precursor heavy-quark pair that eventually forms a 
quarkonia; this effects how it interacts with the media 
•  What happens to other charmonium states & how much feeddown do they give 
to the J/ψ 

Feedown fractions from PHENIX for 200 GeV, y=0 
•  arXiv:1105.1966:   9.6 ± 2.4% (ψ’),   32 ± 9% (χc) 

Production mechanism uncertainty - underlies everything else 



PHENIX, E866, NA3 Comparison 

J/ψ  α for different √s collisions 
E866 p+A & lower-energy NA3 at CERN 

200	  GeV	  

39	  GeV	  

19	  GeV	  

=	  X1	  –	  X2	  
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(x2 is x in the nucleus) 
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arXiv:1010.1246v1 

Suppression not universal vs x2 
as expected for shadowing 

Closer to scaling with xF or rapidity 
•  initial-state gluon energy loss? 
•  or gluon saturation? 

What are the CNM effects that are so strong in Quarkonia production? 

shadowing 

anti-shadowing 

Scaling between measurements at different Energies 
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What are the CNM effects that are so strong in Quarkonia production? 

Reasonable agreement with 
EPS09 nPDF + σbr=4 mb  for 
central collisions but not 
peripheral 

EPS09 with linear thickness 
dependence fails to describe 
centrality dependence of 
forward rapidity region. 

J/ψ in d+Au – learning about CNM thickness dependence 

PHENIX 
arXiv:1010.1246v1 
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Vary the strength of suppression (a) & 
see what relationship between RdAu and 
RCP is given strictly by Glauber 
geometry for different dependences 
on density-weighted thickness 

Woods-‐Saxon	  

•  Break-up has exponential dependence 
•  EPS09 & initial-state dE/dx have 
unknown dependences 

What are the CNM effects that are so strong in Quarkonia production? 

J/ψ in d+Au – learning about CNM thickness dependence 

The forward rapidity points suggests a quadratic 
or higher geometrical dependence 

PHENIX 
arXiv:1010.1246v1 



What are the CNM effects that are so strong in Quarkonia production? 

The various CNM effects are difficult to disentangle experimentally – multiple 
probes, types & energies of collisions, wide kinematic coverage are key 

•  open-heavy suppression – isolates initial-state effects 
•  other probes of shadowing & gluon saturation – forward hadrons, etc. 
•  Drell-Yan to constrain parton energy loss in CNM 

And strong theoretical guidance & analysis – not just for certain measurements 
but for the ensemble of measurements 
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Drell-Yan 

PT is balanced 
by many gluons 

Dilute 
parton 
system 

(deuteron) 
Dense gluon 
field (Au) 

shadowing 

anti-shadowing 
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Open-heavy suppression – Isolates initial-state effects 

Open-charm p+A nuclear dependence (single-µ pT > 1 GeV/c) – very similar 
to that of J/Ψ (E866/NuSea, 39 GeV): 
•  implies that dominant effects are in the initial state 

•  e.g. dE/dx 

absorption 
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What are the CNM effects that are so strong in Quarkonia production? 

Soon new PHENIX c,b measurements 
with VTX/FVTX to isolate initial & 
final-state effects via precision 
comparisons with Quarkonia 
(and later STAR HFT) 



25-July-2012 Donald Isenhower - BEACH 2012 23 

PT is balanced 
by many gluons 

Dilute 
parton 
system 

(deuteron) 
Dense gluon 
field (Au) 

Mono-jets in the gluon saturation 
(CGC) picture give suppression of 
pairs per trigger and some 
broadening of correlation 
Kharzeev, NPA 748, 727 (2005) 

Other probes of shadowing & gluon saturation – Forward hadrons 

What are the CNM effects that are so strong in Quarkonia production? 

shadowing 

anti-shadowing 

R G
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PHENIX 
MPC 



FNAL E906/SeaQuest – Drell Yan 

In SeaQuest at 120 GeV, nuclear suppression in 
Drell-Yan should only be from dE/dx (x2 > 0.1) 

Drell-Yan 

•  Distinguish radiative from collisional (L2 vs L) 
•  then “extrapolate with theory” to energy loss of gluons for 
quarkonia production 

First SeaQuest data taken in 2012 

Vitev 
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Drell-Yan to constrain parton energy loss in CNM 
What are the CNM effects that are so strong in Quarkonia production? 

SeaQuest, not drawn to scale. 



25-July-2012 Donald Isenhower - BEACH 2012 25 

If we are going to study quarkonia in Heavy Ions, 
then we need to know something about them in a “simple” nucleon. 

Fermilab E772 and E866/NuSea dealt with this topic. 

Following slides show what those experiments found, 
and what SeaQuest (Fermilab E906) will provide. 

Whoa! 
Seems like a digression is needed here. 

OK, I’ve spent a long time getting ready to run  
Fermilab SeaQuest, so I’m biased. 
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SeaQuest: Solid Fe + Open Magnet Spectrometer (not to scale) 

SeaQuest has finished 
commissioning run. Detector is in place in 

NM4, old KTeV hall. 
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Parton Energy Loss�

  Colored parton moving in strongly 
interacting media. 

 Only initial state interactions are 
important—no final state strong 
interactions. 

  Important to understand HI data. 
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Structure of the nucleon:  What is d-bar/u-bar in the proton?�
" " " " "Why?�

Parton	  Distribu7ons	  

•  Study	  ra7o	  of	  cross	  sec7ons	  for	  deuterium	  to	  
hydrogen	  

(In	  analysis,	  we	  use	  a	  full	  Next-‐to-‐Leading	  order	  
cross	  sec7on	  calcula7on	  with	  both	  terms)	  

•  PDF	  fits	  are	  and	  uncertain7es	  completely	  
dominated	  by	  E866.	  

•  E906	  will	  significantly	  extend	  these	  
measurements	  and	  improve	  on	  uncertainty.	  It	  
uses	  120	  GeV	  Fermilab	  Main	  Injector	  to	  reach	  
higher	  x	  region.	  	  

   Impact 
  Collider/LHC sensitivity for tests of the Standard Model—Background. 
  Origins of the Proton Sea—Models explain d-bar > u-bar.  No theory (model) 

expects the results seen for x > 0.3. 
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Structure of nucleonic matter: �
How do sea quark distributions differ in a nucleus?�
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Heavier Quarkonia - Upsilons 

Upsilons suppressed in CNM at RHIC (& at FNAL) 

Upsilon suppression in Au+Au at 
RHIC – watch out for CNM 
suppression (as usual)! 

39 GeV p+A 
E772 - 1991 

STAR 
PHENIX 

PHENIX 

y       
y       

ϒ 
J/ψ 



Upsilon production in the heavy ion collisions 

•  Upsilons – cleaner probe to the sQGP 
- cold nuclear absorption and recombination from sQGP are small. 

•  RAA of Upsilon(1S+2S+3S) in central collisions is consistent with melting of all excited 
bottomonia states. 
•  Systematic studies on quarkonia suppression pattern – QGP thermometer! 31 

Slide provided by STAR – The speaker thanks Xin Dong! 
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Heavy Quarks (charm and bottom)�

  Produced by gluon fusion in early stages of 
collisions 

  Experience full medium evolution 

  Expected to lose less energy in medium 
  “Dead cone effect” suppresses gluon radiation at 

small angles θ <mQ/EQ Y. Dokshitzer, D. Kharzeev, PLB 519, 199 
(2001), hep-ph/0106202 

parton 
hot and dense medium Expectation from dead cone:  

25-July-2012 
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 Open Heavy Flavor at RHIC�

Most measurements rely on 
semileptonic decays of D, B mesons 

 p+p 

PRL97, 252002 (2006)  
PRD 83 (2011) 52006  

d+Au Cu+Cu Au+Au 

PRL 98, 172301 (2007)  
PRL 98 (2007) 192301   Preliminary  Preliminary 

 Preliminary 

Ncoll = 1 Ncoll ~ 1000 

25-July-2012 
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 Charm/bottom Separation �

PRL 103, 082002 
(2009) 

PRL 105, 202301 (2010) 

25-July-2012 
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At pT> 5 GeV/c: 
At pT< 5 GeV/c: 

Mostly bottom Mostly charm 

Phys. Rev. Lett. 98, 172301 (2007)  

PRL 105, 202301 (2010) 
PRL 103, 082002 (2009) 

Opposite of 
expectation 

25-July-2012 
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 Improved p+p Baseline�

  Combined Run5 and 
Run6 p+p statistics 

  Smaller uncertainties 
  Allows more precise 

RAA comparisons 

  Increased pT range 

  Consistent with previous 
results in overlap region 

25-July-2012 
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 Run -8 d+Au  – CNM Baseline�

  Combination of background 
subtraction methods 

  Cocktail subtraction 
  Photonic components scaled 

to match converter method 

Difference in cocktail and converter photonic 
background ~5-10% for each centrality 

Note: Cocktail is term that refers to combining 
different Monte Carlo packages that 
compensates for problems using a single one. 

25-July-2012 
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Peripheral RdA �
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 Semi-Peripheral RdA 
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Semi-Central RdA �
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Central RdA �

25-July-2012 
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  Peripheral RdA consistent with 
p+p 

  Evidence of CNM effects on 
open HF yields at 1<pT<4 
GeV/c for more central 
collisions 

  With large systematic 
uncertainties from cocktail 

  Cu+Cu examines Ncoll region 
between d+A and central Au
+Au (up to ~200) 

A few comments on RdA �
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  Cu+Cu and Au+Au 

<Ncoll> CuCu = 150 

<Ncoll> AuAu = 91 

25-July-2012 
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Trend with <Ncoll> �
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Trend with <Ncoll> �

25-July-2012 
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Light Quarks � Heavy Quarks�

Phys. Rev. Lett. 101, 232301 (2008)  arXiv:1005.1627  

Phys. Rev. Lett. 98, 172302 
(2007)  

25-July-2012 



Quarkonia – looking to the Future 

•  Heavy-quark motivated detector upgrades at 
RHIC – e.g. the vertex detectors at PHENIX & 
STAR;  forward calorimeters (MPC-EX) to 
extend to larger rapidity 

•  A new d+Au run with above upgrades – to 
understand CNM effects & provide the reliable 
extrapolation to A+A that we desperately need 

•  Comprehensive comparison of results from 
RHIC (at various energies), SPS, and emerging 
results from the LHC 

•  Increasing luminosity at RHIC (and LHC) to 
allow more quantitative measurements of the 
rarest quarkonia, and over wider kinematics 

•  Constraints from Drell-Yan on quark energy 
loss in CNM (E906) 
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VTX Au+Au event 



πµ	


prompt 
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PHENIX Forward-rapidity Vertex Detector (FVTX) 
•  Used in 2012 Run;  forward charm, beauty; improved J/ψ resolution 

Quarkonia – looking to the Future 

J/ψ 

ψ’ 

Mass (GeV) 

x2 x1 

x1 x2 
beauty 
1.2< η <2.2 

charm 
1.2< η <2.2 

x1, x2 

x coverage for 
open-charm 
and beauty 
with FVTX 

Improved 
separation 
of ψ’  

Resolving radiative & 
collisional dE/dx with 

the FVTX 



700 µb-1 
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PHENIX Mid-rapidity Vertex Detector (VTX) 
•  Running now:  charm, beauty; improved Upsilon resolution 

Quarkonia – looking to the Future 

VTX endview: detector (top); 
Au+Au event (bottom) 

Expectations 
for open-charm 

and beauty 
with VTX 
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Hint of regeneration at LHC? 

Flow very 
small at 
RHIC 

CNM suppression of J/ψ 
has stronger than linear 
dependence on density-
weighted thickness 

STAR 
PHENIX 

PHENIX 

Strong CNM 
effects for 
Upsilon too 

Upsilon suppression at 
RHIC & LHC similar 

J/ψ suppression 
almost same at 
all energies 

STAR 
preliminary 

*>part<N
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>0 (arXiv:1103.6269)
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part
(*) ALICE <N

Summary 
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BACKUPS 
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Tevatron 800 GeV 

Main Injector 120 
GeV 



Landscape of the Quarkonia Puzzle 
Quarkonia in Deconfined Matter Workshop 

Acitrezza, Italy - Sep 28-30, 2011 
Mike Leitch, LANL 
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•  Charmonia Suppression in A+A Collisions 
•  (Strong) Cold Nuclear Matter (CNM) effects 
•  Heavier Quarkonia - Upsilons 
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Recent Open Heavy Flavor 
Results from PHENIX 

J. Matthew Durham 
for the PHENIX Collaboration 
Stony Brook University 

durham@skipper.physics.sunysb.edu 
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Decadal upgrades of RHIC detectors; at PHENIX: 
•  Larger acceptance and luminosity for rarest (quarkonia) probes 
•  Very forward rapidity constraints on CNM 

EMCal 
HCal 

RIC
H 
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Quarkonia – looking to the Future 
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Projections for J/ψ (acceptance only, no efficiencies!): 
•  260 nb-1 d+Au run: ~9.7k J/ψ -> e+ e- in North MPC 
•  34 pb-1 200 GeV p+p run ~3.6k J/ψ sum for two arms 

Enhance the forward direction (3 < η < 3.8) in PHENIX with 
a combined preshower and tracking device 

•  Enable J/ψ measurements in MPC with low background 
•  Enable reconstruction of π0’s in the MPC out to high pT 

•  Measurement of direct photons 
•  Reconstruction of jet direction with charged hadrons 
Technology: 
•  Si detectors (pad and 500 mm strips) plus W absorber 

The MPC Extension (MPC-EX) 

Ready for next 
d+Au in 2014? 
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Quarkonia – looking to the Future 
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