

## CP violation

## measurements with the ATLAS detector

"Determination of $\phi_{S}$ and $\Delta \Gamma_{S}$
 from the Decay $\mathrm{B}_{\mathrm{S}} \rightarrow \mathrm{J} / \psi \phi "$
E. Kneringer - University of Innsbruck on behalf of the ATLAS collaboration BEACH2012, Wichita, USA

## Motivation

- Main physics aim of this work of doing a time dependent angular analysis of $\mathrm{B}_{\mathrm{S}} \rightarrow \mathrm{J} / \psi \phi$ decays in ATLAS:



## Measurement of

> CP violating weak mixing phase $\phi_{S}$
$>$ precise measurement of $\Delta \Gamma_{S}$

- decay width difference between the mass eigenstates $B_{H}$ and $B_{L}$
which could point to BSM physics.


## Outline

- Introduction
> CP violation and $\mathrm{B}_{\mathrm{S}}$ Phenomenology
- ATLAS Detector
- The Measurement
> Angular Correlations
> Unbinned Maximum Likelihood Fit
- Results
> Fit Projections
> Systematic Uncertainties
> Comparison with other Experiments
- Conclusions


## CP violation and the CKM matrix

- Unitarity of CKM matrix
> constraint from $2^{\text {nd }}$ and $3^{\text {rd }}$ columns:

$$
\left(\begin{array}{lll}
V_{u d} & V_{u s} & V_{u b} \\
V_{c d} & V_{c s} & V_{c b} \\
V_{t d} & V_{t s} & V_{t b}
\end{array}\right)
$$

$$
V_{u s} V_{u b}^{*}+V_{c s} V_{c b}^{*}+V_{t s} V_{t b}^{*}=0
$$

Wolfenstein parametrization:
$O\left(\lambda^{4}\right): \lambda \cdot A \lambda^{3}(\rho+i \eta)+\left(1-\frac{\lambda^{2}}{2}\right) \cdot A \lambda^{2}+V_{t s} \cdot 1=0$

$J=2 \cdot$ Area $=A \lambda^{4} \eta \cdot\left(1-\frac{\lambda^{2}}{2}\right) A \lambda^{2}=\underline{A^{2} \lambda^{6} \eta}+A^{2} \frac{\lambda^{8}}{2} \eta+O\left(\lambda^{10}\right)$
The quantity $\sin \left(2 \beta_{\mathrm{s}}\right)$ can be determined from a time dependent analysis of $\mathrm{B}_{\mathrm{S}} \rightarrow \mathrm{J} / \psi \phi$. Experimenters prefer $\phi_{S} \cong-2 \beta_{S}$.

## CP violation: neutral $\mathrm{B}_{\mathrm{S}}$ system

- Interference of decays with and without mixing
> Mixing induced CP violation
- Phase difference $\phi_{S}=2 \cdot \arg \left[V_{t s}\right]=-2 \beta_{S}$ SM prediction: $\phi_{S}=-0.0368 \pm 0.0018 \mathrm{rad}$

$$
\begin{aligned}
& \mathrm{B}_{\mathrm{S}} \xrightarrow{\rightarrow} \mathrm{f} \\
& \mathrm{~B}_{\mathrm{S}} \rightarrow \overline{\mathrm{~B}}_{\mathrm{S}} \rightarrow \mathrm{f}
\end{aligned}
$$


$\phi_{s}$ : This diagram justifies the name weak mixing phase.


## Phenomenology of the $\mathrm{B}_{\mathrm{S}}, \overline{\mathrm{B}}_{\mathrm{S}}$ system

- Mass eigenstates $\mathrm{B}_{\mathrm{L}}, \mathrm{B}_{\mathrm{H}}$ are linear combinations of flavor eigenstates:

$$
\left|\mathrm{B}_{\mathrm{L}, \mathrm{H}}\right\rangle=\mathrm{p}\left|\mathrm{~B}_{\mathrm{S}}\right\rangle \pm \mathrm{q}\left|\overline{\mathrm{~B}}_{\mathrm{S}}\right\rangle
$$

- CP violation $\rightarrow \mathrm{B}_{\mathrm{L}}, \mathrm{B}_{\mathrm{H}} \neq \mathrm{CP}$ eigenstates
- Two particle system described by 4 parameters

| > oscillation frequency | $\Delta m_{S}$ | $=m_{H}-m_{\mathrm{L}}$ |
| :--- | :--- | :--- |
| > mean width | $\Gamma_{\mathrm{S}}$ | $=\left(\Gamma_{\mathrm{L}}+\Gamma_{\mathrm{H}}\right) / 2$ |
| > width difference | $\Delta \Gamma_{\mathrm{S}}$ | $=\Gamma_{\mathrm{L}}-\Gamma_{\mathrm{H}}$ |
| > weak mixing phase | $\phi_{\mathrm{S}}$ | $\neq 0$ if CP violation |

(plus nonperturbative parameters)

## The ATLAS detector

H


The ATLAS collaboration
38 Countries
185 Institutions
2866 Scientific Authors

## every year:

several new applications and expressions of interest for membership

2011: > $5 \mathrm{fb}^{-1} @ 7$ TeV


## The measurement

## 1. Trigger

> using $4.9 \mathrm{fb}^{-1}$ of data collected 2011
> events selected by muon triggers (single, di-, J/ $\psi$ )

- $\mathrm{p}_{\mathrm{T}}$ threshold for muons: 4-10 GeV

2. Selection cuts

$J / \psi$
> different $\mathrm{J} / \psi\left(\mu^{+} \mu^{-}\right)$mass windows for barrel/endcap regions

- since mass resolution depends on $|\eta|$ of muons
> $\phi\left(\mathrm{K}^{+} \mathrm{K}^{-}\right)$invariant mass window: 22 MeV
- $\mathrm{p}_{\mathrm{T}}$ (kaons) $>1 \mathrm{GeV}$
> B-meson secondary decay vertex fit: $\chi^{2} /$ dol $<3$
$\rightarrow$ mass $\mathrm{m}_{\mathrm{i}}$, proper decay time $\mathrm{t}_{\mathrm{i}}$ (computed in transverse plane), decay angles

3. Acceptance calculated on large samples of signal and background Monte Carlo events
$>$ e.g. $\mathrm{B}^{0} \rightarrow \mathrm{~J} / \psi \mathrm{K}^{0^{*}}, \mathrm{bb} \rightarrow \mathrm{J} / \psi \mathrm{X}, \mathrm{pp} \rightarrow \mathrm{J} / \psi \mathrm{X}$

## $\mathrm{B}_{S}\left(\overline{\mathrm{~B}}_{S}\right) \rightarrow \mathrm{J} / \psi \phi$ and CP eigenstates

- Analysis does not distinguish the initial states, i.e. whether there is a $\mathrm{B}_{\mathrm{S}}$ or a $\overline{\mathrm{B}}_{\mathrm{S}}$ at the beginning
= "untagged analysis"
- Both initial states decay into the same final state
> final state is a superposition of CP eigenstates
- J/ $\psi, \phi\left(\mathrm{J}^{\mathrm{PC}}=1^{-\cdot}, 1^{--}\right)$can have $\mathrm{L}=0,1,2$

Pseudoscalar $\rightarrow$ Vectormeson + Vectormeson, with relative L

$$
\begin{array}{ll}
\text { orbital angular momentum: } & L=0,2 \ldots \text { CP even }(+1) \\
& L=1 \ldots \text { CP odd }(-1)
\end{array}
$$

> CP eigenstates of final state can be distinguished (statistically) through their angular configuration

- 4 particle final state $\mathrm{J} / \psi\left(\rightarrow \mu^{+} \mu^{-}\right) \phi\left(\rightarrow \mathrm{K}^{+} \mathrm{K}^{-}\right)$can be described by three angles


## Kinematics of the decay

- Transversity basis
> x-axis $=$ direction of decay in B rest frame
$>x-y$ plane $=$ decay plane of $\mathrm{K}^{+} \mathrm{K}^{-} \quad\left(\mathrm{K}^{+} \rightarrow+\mathrm{y}\right)$
$>\psi_{\mathrm{T}}=$ angle between x -axis and $\mathrm{K}^{+}$direction ( $\phi$ r.f.)
$>\theta_{T}$ and $\phi_{T}$ are the polar and azimuthal angles of the $\mu^{+}$in the $\mathrm{J} / \psi$ rest frame


Transversity angles $\Omega\left(=\psi_{T}, \theta_{T}, \phi_{T}\right)$ are used to describe the angular distributions of the different $\mathrm{CP}(+1,-1)$ final states.

## Angular and proper time distributions

- Differential decay rate

$$
\frac{d^{4} \Gamma}{d t d \Omega}=\sum_{k=1}^{10} \mathcal{O}^{(k)}(t) g^{(k)}\left(\theta_{T}, \psi_{T}, \varphi_{T}\right)
$$

polarization state long. trans. trans.
interference terms

Terms related to non-resonant and via the $\mathrm{f}_{0}$ state $\mathrm{K}^{+} \mathrm{K}^{-}$production (S-wave) $\rightarrow$ small
$\sin \phi_{\mathrm{S}} \approx \phi_{\mathrm{S}}$
$\cos \phi_{S}=1+O\left(\phi_{S}{ }^{2}\right)$

Normalization: $\left|A_{0}(0)\right|^{2}+\left|A_{| |}(0)\right|^{2}+\left|A_{\perp}(0)\right|^{2}+\left|A_{S}(0)\right|^{2}=1$
Each amplitude $\mathrm{A}_{\mathrm{x}}$ comes with its strong phase $\delta_{\mathrm{x}}$.
Define strong phases relative to $\mathrm{A}_{0}(0)$ : choose $\delta_{0}=0$
$\rightarrow 3$ amplitudes +3 strong phases $=6$ parameters for the fit!

## Symmetries

- $\phi_{S}$ enters the likelihood via the 10 functions describing the proper decay time distribution, e.g. terms:
$f\left(\Delta \Gamma_{\mathrm{S}}\right) \cos \left(\delta_{\perp}-\delta_{\|}\right) \sin \phi_{\mathrm{S}}$
$e^{-\Delta \Gamma_{s}} \cos \phi_{S}-e^{+\Delta \Gamma_{s}} \cos \phi_{S}$

- Likelihood is invariant under the transformations
$\left\{\phi_{\mathrm{S}}, \delta_{\perp}, \delta_{\|}, \delta_{\mathrm{S}}, \Delta \Gamma_{\mathrm{S}}\right\} \rightarrow\left\{-\phi_{\mathrm{S}}, \pi-\delta_{\perp},-\delta_{\|},-\delta_{\mathrm{S}}, \Delta \Gamma_{\mathrm{S}}\right\}$
but also
$\left\{\phi_{\mathrm{S}}, \delta_{\perp}, \delta_{\|}, \delta_{\mathrm{S}}, \Delta \Gamma_{\mathrm{S}}\right\} \rightarrow\left\{\pi-\phi_{\mathrm{S}}, \pi-\delta_{\perp},-\delta_{\|},-\delta_{\mathrm{S}},-\Delta \Gamma_{\mathrm{S}}\right\}$
and the combination of the two.
> 4-fold symmetry of the fit result
- ATLAS is not yet able to resolve the ambiguities needs external input


## Construction of the Likelihood function $\mathcal{L}$

- Measured variables (vars)
$>\left(\mathrm{m}_{\mathrm{i}}, \sigma_{\mathrm{m}_{\mathrm{i}}}\right),\left(\mathrm{t}_{\mathrm{i}}, \sigma_{\mathrm{t}_{\mathrm{i}}}\right), \Omega_{\mathrm{i}}$,
> set of nuisance parameters to describe background
- 27 parameters in the full fit (pars)
> 9 physics parameters
- 3 parameters of the $\mathrm{B}_{\mathrm{S}}, \overline{\mathrm{B}}_{\mathrm{S}}$ system (not $\Delta \mathrm{m}_{\mathrm{S}}$ )
- 3 transversity amplitudes $\left|A_{0}\right|,\left|A_{\|}\right|,\left|A_{s}\right|$
- 3 strong phases $\delta_{\perp}, \delta_{\|}, \delta_{S}$
$>$ signal fraction $f_{S} \rightarrow$ number of signal events
> parameters describing various distributions
- the $\mathrm{J} / \psi$ signal mass distribution, angular background distributions, estimated decay time uncertainty distributions for signal and background events, scale factors
$\max \mathcal{L}($ pars; vars $) \rightarrow$ best fit


## Result of the fit: fit projections

## $B_{s}$ meson mass



## proper decay time



$$
\Delta \Gamma_{S}=\Gamma_{\mathrm{L}}-\Gamma_{\mathrm{H}}
$$

## Fit projections - transversity angles





## Systandatic uncertaintag

- They are calculated using different techniques, including changes in detector simulation (alignment), data based studies (efficiency), Monte Carlo pseudo experiments (mass models) and variations in analysis methods and assumptions.

| Systematic Uncertainty | $\phi_{s}(\mathrm{rad})$ | $\Delta \Gamma_{s}\left(\mathrm{ps}^{-1}\right)$ | $\Gamma_{s}\left(\mathrm{ps}^{-1}\right)$ | $\left\|A_{\\| \\|}(0)\right\|^{2}$ | $\left\|A_{0}(0)\right\|^{2}$ | $\left\|A_{S}(0)\right\|^{2}$ |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| Inner Detector alignment | 0.04 | $<0.001$ | 0.001 | $<0.001$ | $<0.001$ | $<0.01$ |
| Trigger efficiency | $<0.01$ | $<0.001$ | 0.002 | $<0.001$ | $<0.001$ | $<0.01$ |
| Signal mass model | 0.02 | 0.002 | $<0.001$ | $<0.001$ | $<0.001$ | $<0.01$ |
| Background mass model | 0.03 | 0.001 | $<0.001$ | 0.001 | $<0.001$ | $<0.01$ |
| Resolution model | 0.05 | $<0.001$ | 0.001 | $<0.001$ | $<0.001$ | $<0.01$ |
| Background lifetime model | 0.02 | 0.002 | $<0.001$ | $<0.001$ | $<0.001$ | $<0.01$ |
| Background angles model | 0.05 | 0.007 | 0.003 | 0.007 | 0.008 | 0.02 |
| $B^{0}$ contribution | 0.05 | $<0.001$ | $<0.001$ | $<0.001$ | 0.005 | $<0.01$ |
| Totals | 0.10 | 0.008 | 0.004 | 0.007 | 0.009 | 0.02 |

## Results of the fit in numbers

- Statistical error for $\phi_{S}$ rather large because of limited proper decay time resolution of ATLAS
> but still competitive with Tevatron results

| Parameter | Value | Statistical <br> uncertainty | Systematic <br> uncertainty |
| :---: | :---: | :---: | :---: |
| $\phi_{s}(\mathrm{rad})$ | 0.22 | 0.41 | 0.10 |
| $\Delta \Gamma_{s}\left(\mathrm{ps}^{-1}\right)$ | 0.053 | 0.021 | 0.008 |
| $\Gamma_{s}\left(\mathrm{ps}^{-1}\right)$ | 0.677 | 0.007 | 0.004 |
| $\left\|A_{0}(0)\right\|^{2}$ | 0.528 | 0.006 | 0.009 |
| $\left\|A_{\\|}(0)\right\|^{2}$ | 0.220 | 0.008 | 0.007 |
| $\left\|A_{S}(0)\right\|^{2}$ | 0.02 | 0.02 | 0.02 |

## \& correlation matrix

$>$ Largest correlation between $\Gamma_{\mathrm{S}}$ and $\Delta \Gamma_{\mathrm{s}}$
$>\mathrm{B}_{\mathrm{S}}$ meson parameters are practically uncorrelated with the amplitudes.

|  | $\phi_{s}$ | $\Delta \Gamma_{s}$ | $\Gamma_{s}$ | $\left\|A_{0}(0)\right\|^{2}$ | $\left\|A_{\\|}(0)\right\|^{2}$ | $\left\|A_{S}(0)\right\|^{2}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\phi_{s}$ | 1.00 | -0.13 | 0.38 | -0.03 | -0.04 | 0.02 |
| $\Delta \Gamma_{s}$ |  | 1.00 | -0.60 | 0.12 | 0.11 | 0.10 |
| $\Gamma_{s}$ |  |  | 1.00 | -0.06 | -0.10 | 0.04 |
| $\left\|A_{0}(0)\right\|^{2}$ |  |  |  | 1.00 | -0.30 | 0.35 |
| $\left\|A_{\\|}(0)\right\|^{2}$ |  |  |  |  | 1.00 | 0.09 |
| $\left\|A_{S}(0)\right\|^{2}$ |  |  |  |  |  | 1.00 |

## Likelihood contours: $\phi_{\mathrm{s}}-\Delta \Gamma_{\mathrm{s}}$ plane



## Comparison



## Conclusion

- From $4.9 \mathrm{fb}^{-1}$ of data collected by ATLAS in 2011 decay time and angular distributions have been studied in a sample of $22700 \mathrm{~B}_{\mathrm{S}} / \overline{\mathrm{B}}_{\mathrm{S}} \rightarrow \mathrm{J} / \psi . \phi$ decays. Without flavor tagging, and assuming $\delta_{\perp}=2.95 \pm 0.39 \mathrm{rad}$ the results of the analysis are:

$$
\begin{aligned}
\phi_{s} & =0.22 \pm 0.41 \quad \text { (stat.) } \pm 0.10 \quad \text { (syst.) } \mathrm{rad} \\
\Delta \Gamma_{s} & =0.053 \pm 0.021 \text { (stat.) } \pm 0.008 \text { (syst.) } \mathrm{ps}^{-1} \\
\Gamma_{s} & =0.677 \pm 0.007 \text { (stat.) } \pm 0.004 \text { (syst.) } \mathrm{ps}^{-1} \\
\left|A_{0}(0)\right|^{2} & =0.528 \pm 0.006 \text { (stat.) } \pm 0.009 \text { (syst.) } \\
\left|A_{\|}(0)\right|^{2} & =0.220 \pm 0.008 \text { (stat.) } \pm 0.007 \text { (syst.) }
\end{aligned}
$$

- Future:
> Plan to implement flavor tagging (distinguish $\mathrm{B}_{\mathrm{S}} / \overline{\mathrm{B}}_{\mathrm{S}}$ )
> Increased data sample in 2012 ( $\sim$ factor 3 is realistic), but fewer events /fb-1 (due to increased $\mathrm{p}_{\mathrm{T}}$ cuts); expect to half our statistical errors.


## References

$>$ SM expected values for $\phi_{\mathrm{S}}, \Delta \Gamma_{\mathrm{S}}$

- UTFit Collaboration, PRL 97, 151803 (2006)
> Decay time an angular correlation formalism
- A. Dighe, I. Dunietz, R. Fleischer, EPJ-C 6 (1999) 647
> Results from other experiments (LHCb, CDF, D0)
- CDF Collaboration: CDF-Public-Note-10778
- D0 Collaboration: PRD85, 032006 (2012)
- LHCb Collaboration: LHCb-CONF-2012-002; PRL 108, 101803 (2012); PRL 108, 241801 (2012)
> This ATLAS analysis
- ATLAS Collaboration, ALTAS-CONF-2012-xxx


## backup slides

## ATLAS result on strong phases

Input:

| $\delta_{\text {perp }}$ | Constrained to $2.95 \pm 0.39 \mathrm{rad}$ |
| :--- | :--- |

Likelihood fit:

| $\delta_{\text {par }}$ | Best fit: $\pi, 1 \sigma$ range: $3.04-3.24 \mathrm{rad}$ |
| :--- | :--- |
| $\delta_{\text {perp }}-\delta_{\mathrm{S}}$ | $0.03 \pm 0.13 \mathrm{rad}$ |

## Maximum Likelihood fit

$$
\begin{array}{r}
\ln \mathcal{L}=\sum_{i=1}^{N}\left\{w _ { i } \cdot \operatorname { l n } \left(f_{\mathrm{s}} \cdot \mathcal{F}_{\mathrm{S}}\left(m_{i}, t_{i}, \Omega_{i}\right)+f_{\mathrm{s}} \cdot f_{\mathrm{B}^{0}} \cdot \mathcal{F}_{\mathrm{B}^{0}}\left(m_{i}, t_{i}, \Omega_{i}\right)\right.\right. \\
\left.\left.+\left(1-f_{\mathrm{s}} \cdot\left(1+f_{\mathrm{B}^{0}}\right)\right) \mathcal{F}_{\mathrm{Fkg}}\left(m_{i}, t_{i}, \Omega_{i}\right)\right)\right\}+\underbrace{\ln P\left(\delta_{\perp}\right)}_{\begin{array}{c}
\text { Gaussian } \\
\text { constraint }
\end{array}}
\end{array}
$$

signal:

$$
\begin{aligned}
& \left.\overline{\mathcal{F}_{\mathrm{s}}\left(m_{i}\right.}, t_{i}, \Omega_{i}\right)=P_{\mathrm{s}}\left(m_{i} \mid \sigma_{m_{i}}\right) \cdot \overbrace{10 \text { O}^{(k)} \text {-functions }}\left(\sigma_{m_{i}}\right) \\
& \text { background: } \\
& \text { P} \underbrace{}_{\begin{array}{c}
\text { angular } \\
\text { sculpting }
\end{array}}\left(\Omega_{i}, t_{i} \mid \sigma_{t_{i}}\right)
\end{aligned} \overbrace{P_{\mathrm{s}}\left(\sigma_{t_{i}}\right)}^{A\left(\Omega_{i}, p_{\mathrm{Ti}}\right)} \cdot \overbrace{P_{\mathrm{s}}\left(p_{\mathrm{T} i}\right)}^{A}
$$

$$
\begin{aligned}
\mathcal{F}_{B^{0}}\left(m_{i}, t_{i}, \Omega_{i}\right)= & P_{B^{0}}\left(m_{i}\right) \cdot P_{\mathrm{s}}\left(\sigma_{m_{i}}\right) \cdot P_{B^{0}}\left(t_{i} \mid \sigma_{t_{i}}\right) \\
& \cdot P_{B^{0}}\left(\theta_{T}\right) \cdot P_{B^{0}}\left(\varphi_{T}\right) \cdot P_{B^{0}}\left(\psi_{T}\right) \cdot P_{\mathrm{s}}\left(\sigma_{t_{i}}\right) \cdot P_{\mathrm{s}}\left(p_{\mathrm{T} i}\right) \\
\mathcal{F}_{\mathrm{bkg}}\left(m_{i}, t_{i}, \Omega_{i}\right)= & P_{\mathrm{b}}\left(m_{i}\right) \cdot P_{\mathrm{b}}\left(\sigma_{m_{i}}\right) \cdot P_{\mathrm{b}}\left(t_{i} \mid \sigma_{t_{i}}\right) \\
& \cdot P_{\mathrm{b}}\left(\theta_{T}\right) \cdot P_{\mathrm{b}}\left(\varphi_{T}\right) \cdot P_{\mathrm{b}}\left(\psi_{T}\right) \cdot P_{\mathrm{b}}\left(\sigma_{t_{i}}\right) \cdot P_{\mathrm{b}}\left(p_{\mathrm{T} i}\right)
\end{aligned}
$$

## Uncertainty distributions $P_{\mathrm{s}, \mathrm{b}}\left(\sigma_{\mathrm{m}, \mathrm{t}}\right)$

Mass and decay-time measurements enter the likelihood with event-byevent uncertainties. The error distributions are extracted from data. Checks done $\rightarrow$ no significant systematics.


Mass uncertainty distribution from data, the fits to the background an the signal fractions and the sum of the two fits.


Same for:
Proper decay time uncertainty distribution.

## Mass distributions




Figure 11. Mass distributions of $J / \psi \rightarrow \mu^{+} \mu^{-}$and $\phi \rightarrow K^{+} K^{-}$decays for $B_{s}^{0}$ candidates within the signal mass range $5.317 \mathrm{GeV}<\mathrm{m}\left(B_{s}^{0}\right)<5.417 \mathrm{GeV}$.

## Contour plot



## on a lager scale



## Comparision of measurements

- compiled by S. Palestini

|  | $\begin{aligned} & \Gamma_{\mathrm{s}} \\ & {[\mathrm{ps}-1]} \end{aligned}$ | $\begin{aligned} & \Delta \Gamma_{s} \\ & {[p s-1]} \end{aligned}$ | $\left\|A_{0}\right\|^{2}$ | $\left\|A_{\text {par }}\right\|^{2}$ | $\begin{aligned} & \boldsymbol{\varphi}_{\mathbf{s}} \\ & {[\mathrm{rad}]} \end{aligned}$ | $\left\|A_{s}\right\|^{\mathbf{2}}$ | $\begin{aligned} & \boldsymbol{\delta}_{\text {perp }} \\ & \text { [rad] } \end{aligned}$ | $\begin{aligned} & \boldsymbol{\delta}_{\mathrm{par}} \\ & {[\mathrm{rad}]} \end{aligned}$ | $\begin{aligned} & \boldsymbol{\delta}_{\mathbf{s}} \\ & {[\mathrm{rad}]} \end{aligned}$ | Signal sample |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| D0 $(8 \mathrm{fb}-1$, stat(+)syst $\Delta \Gamma \mathrm{s}>0$ case) | $\begin{aligned} & 0.693 \\ & -0.020 \\ & +0.015 \end{aligned}$ | 0.179 <br> -0.060 <br> +0.059 | $\begin{aligned} & 0.565 \\ & \pm 0.017 \end{aligned}$ | $\begin{aligned} & 0.249 \\ & -.022 \\ & +.021 \end{aligned}$ | $\begin{aligned} & -0.56 \\ & -0.32 \\ & +0.36 \end{aligned}$ | $\begin{aligned} & 0.173 \\ & \pm 0.036 \\ & \text { effective } \end{aligned}$ | Near $\pi$ <br> [Assum. cos <br> $\left.\left(\delta_{\text {perp }}\right)<0\right]$ | $\begin{aligned} & 3.15 \\ & \pm 0.19 \end{aligned}$ | $\begin{aligned} & \cos \left(\delta_{\text {perp }}-\right. \\ & \left.\delta_{\mathrm{S}}\right)=-.20 \\ & -.27+.26 \end{aligned}$ | $\sim 5300$ |
| CDF (10fb ${ }^{-1}$, unpublished) | $\begin{aligned} & 0.654 \\ & \pm 0.008 \\ & \pm 0.004 \end{aligned}$ | $\begin{aligned} & 0.068 \\ & \pm 0.026 \\ & \pm 0.007 \end{aligned}$ | $\begin{aligned} & 0.512 \\ & \pm 0.012 \\ & \pm 0.017 \end{aligned}$ | $\begin{aligned} & 0.229 \\ & \pm 0.010 \\ & \pm 0.014 \end{aligned}$ | =SM <br> Fit:-0.2 <br> $4 \pm 0.36$ | Appar. small | $\begin{aligned} & 2.79 \\ & \pm 0.53 \\ & \pm 0.15 \end{aligned}$ | Near $\pi$ | Small effect | 11000 |
| LHCb ( $1 \mathrm{fb}^{-1}$, unpublished) | $\begin{aligned} & 0.6580 \\ & \pm 0.0054 \\ & \pm 0.0066 \end{aligned}$ | 0.116 <br> $\pm 0.018$ <br> $\pm 0.006$ | 0.523 $\pm 0.007$ <br> $\pm 0.024$ | $\begin{aligned} & 0.231 \\ & \pm 0.021 \\ & {\left[^{*}\right]} \end{aligned}$ | $\begin{aligned} & -0.001 \\ & \pm 0.101 \\ & \pm 0.027 \end{aligned}$ | $\begin{aligned} & 0.022 \\ & \pm 0.012 \\ & \pm 0.007 \end{aligned}$ | $\begin{aligned} & 2.90 \\ & \pm 0.36 \\ & \pm 0.07 \end{aligned}$ | $\begin{aligned} & \text { Near } \pi \\ & \pm 0.33 \\ & \pm 0.13 \end{aligned}$ | $\begin{aligned} & 2.90 \\ & \pm 0.36 \\ & \pm 0.08 \end{aligned}$ | 21000 |
| ATLAS <br> (4.9fb-1, preliminary) | $\begin{aligned} & 0.677 \\ & \pm 0.007 \\ & \pm 0.004 \end{aligned}$ | $\begin{aligned} & 0.053 \\ & \pm 0.021 \\ & \pm 0.008 \end{aligned}$ | 0.528 <br> $\pm 0.006$ <br> $\pm 0.009$ | $\begin{aligned} & 0.220 \\ & \pm 0.008 \\ & \pm 0.007 \end{aligned}$ | $\begin{aligned} & 0.22 \\ & \pm 0.41 \\ & \pm 0.10 \end{aligned}$ | $\begin{aligned} & 0.02 \\ & \pm 0.02 \\ & \pm 0.02 \end{aligned}$ | $\begin{aligned} & \text { Assum. } \\ & 2.95 \\ & \pm .39 \end{aligned}$ | near $\pi$ | $\begin{aligned} & \text { Near } \\ & \delta_{\text {perp }} \end{aligned}$ | 23000 |

[*] from $\left|A_{0}\right|^{2}$ and $\left|A_{\text {par }}\right|^{2}$, summing stat. and syst. errors in quadrature and using quoted (negative) correlation coefficient.

## New Physics in $B_{S}-\bar{B}_{S}$ mixing

- Would change the off-diagonal element $\mathrm{M}_{12}$ of the mass matrix (but not significantly affect the corresponding decay matrix element $\Gamma_{12}$ )
> parametrization: $M_{12}^{s} \equiv M_{12}^{\mathrm{sN}, s} . \Delta_{s}, \quad \Delta_{s} \equiv\left|\Delta_{s}\right|^{i \theta_{s}^{s}}$.
> correction adds linearly to the weak phase, like in $\sin \left(\phi_{s}^{s M M}+\phi_{s}^{\Delta}\right)$
> for small $\phi_{S}$ only contributes quadratically to $\Delta \Gamma_{\mathrm{S}}$ :

$$
\Delta \Gamma_{s}=2\left|\Gamma_{12}^{s}\right| \cos \left(\phi_{s}^{\mathrm{SM}}+\phi_{s}^{\Delta}\right)
$$

> magnitude measurable through oscillation frequency:

$$
\Delta M_{s}=\Delta M_{s}^{\mathrm{SM}}\left|\Delta_{s}\right|
$$

