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Abstract

A molecular potential is used for the first time as an effective potential for the overall interaction in bottomonium.
The rotational contributions of P states are calculated. Known experimental energy levels of bottomonium are fitted
and values of predicted energy levels are calculated. The radii of some states are calculated.
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1. Introduction

The static potential plays an important role in the de-
scription of heavy quarks. With respect to this subject
the pioneering work of Eichten et al. [1] was followed
by many other works. After more than 30 years some
important features of the static interaction are not yet
completely understood. That is one of the reasons why
a large number of approximate methods and effective
potentials have been proposed for the description of the
overall interaction in quarkonia [1]-[31] . This is a large
number but is not exhaustive at all of the enormous ef-
fort developed in the field.

When dealing with heavy mesons we can use the non-
relativistic quantum mechanics formalism with con-
stituent masses for the quarks and anti-quarks. In this
work we use a molecular potential for describing low
energy states of bottomonium. This description allows
the obtainment of the contribution of the rotational en-
ergy of P states, values of theoretically predicted energy
levels, and calculation of the radii of some levels. It is,
thus, a unique and useful calculation that contributes to
the understanding of bottomonium states. None of the
above listed papers has used a molecular potential in the
description of quarkonia states.
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As it is widely known confinement is not well under-
stood and there are models that do not consider it in-
side hadrons. For example, the original MIT bag model
treats confinement only at the wall by making the vector
current null at it [32]. In the case of the chiral bag model
[33] confinement is treated by means of the continuity
of the axial vector current at the wall. We do not need
to worry about confinement complications because we
only deal with low energy levels.

All the experimental data used below for the energies
of bottomonium states were taken from Beringer et al.
(PDG) [34]. All energy values below are in MeV unless
noted otherwise.

2. The molecular potential

Two widely used molecular potentials are the Kratzer
potential [35, 36, 37]

V(r) = −2D
(
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2
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)
(1)

and the Morse potential [37]

V(r) = D
(
e−2αx − 2e−αx

)
(2)

in which −D is the minimum of the well, a is the dis-
tance where V = −D, and x = (r − a)/a . In the
Kratzer potential the 1st term is a QCD-like term and
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its 2nd term takes care of the well-known repulsion of
the strong force for small distances [38]. In the Morse
potential the leading term of the expansion for x � 1
is of the form −C/r , and for r < a the Morse potential
increases faster than Kratzer’s, presenting, thus, a very
strong repulsion for very short distances. For |x| < 1
both potentials can be expanded about the minimum up
to order 3 in x and produce the expression

V(x) = −D +
1
2

ka2x2 − λka3x3 (3)

where λ = α
2a for the Morse potential.

The solution of Schrödinger equation for both poten-
tials yields the expression [37, 39]
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for the vibrational and rotational levels above the mini-
mum of the potential (−D) where υ, L = 0, 1, 2, 3, . . ..
In this equation the first term describes harmonic vi-
brations, the second term takes into account the anhar-
monicity of the potential, the third term describes rota-
tions with constant moment of inertia, the fourth term
represents the centrifugal distortion and the fifth term
represents the coupling between vibration and rotation.
This expression can also be written as [39]
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where ω,D, α, a and m (the reduced mass) are related
by the expression

ω2 =
2α2D
ma2 (6)

for the Morse potential. The constant BL is given by
BL = ~2/2ma2 where m is the reduced mass of the
constituent quark and antiquark, that is, mc2 = 1

2 Mbc2,
where Mb is the mass of the b quark. Details on the
connections between Morse and Kratzer potentials can
be found in references [40] and [41].

3. The fitting

The first two levels, ηb(1S ) and Υ(1S ) are a hyperfine
doublet because of the spin-spin interaction, but since

Table 1: The levels considered in the fitting of bottomonium.
(υ, L) Particle Mass (MeV/c2)
(0, 0) Υ(1S ) 9460.30 ± 0.26
(0, 1) χb(1P) 9901.6 ± 4.5
(1, 0) Υ(2S ) 10023.26 ± 0.31
(0, 2) Υ(1D) 10161.1 ± 10.0
(1, 1) χb(2P) 10261.4 ± 4.2

our Hamiltonian does not depend on spin, we can thus
use the S states Υ(1S ) and Υ(2S ) for the fitting. In the
case of χb(1P) and χb(2P) states we should take out the
spin-orbit interaction contribution which is given by

∆ES L = ∆ [J(J + 1) − L(L + 1) − S (S + 1)] (7)

where J =
∣∣∣∣ ~J∣∣∣∣ = ∣∣∣∣~L + ~S ∣∣∣∣ in which S = 1 for χb(P) states.

Applying Eq. (7) to the states χb0(1P), χb1(1P) and
χb2(1P) we obtain the average values ∆1 = 10.1 ± 0.2,
and E1P = 9901.6 ± 0.5 where E1P is the energy of the
degenerate level χb(1P). Doing the same for the states
χb0(2P), χb1(2P) and χb2(2P) we obtain, similarly, the
average values E2P = 10261.4 ± 0.6, ∆2 = 6.9 ± 0.3,
where E2P is the energy of the degenerate level χb(2P).
The energies of the states Υ1(1D) and Υ3(1D) have not
yet been found experimentally, and thus we took for the
degenerate level Υ(1D) the energy of the level Υ2(1D)
which is about 10161.1 but with a larger error bar that
we estimated in the following way. In the case of the
spin-orbit interaction of 1P states the degenerate level
χb(1P) has an energy of 9901.6±0.5 which is just about
8.84 from the middle state χb1(1P) which has the energy
9892.76 ± 0.40, and in the case of 2P states the degen-
erate level χb(2P) has an energy of 10261.4± 0.6 which
is about 5.94 from 10255.46 ± 0.72 which is the energy
of the middle state χb1(2P). Therefore, we can assume
that the degenerate level Υ(1D) has an energy of about
10163.7 ± 10.0. Tab. 1 presents a summary of the lev-
els used in the fitting that includes E1P and E2P with the
corresponding values of υ and L.

4. Results and discussion

Fitting the levels of Tab. 1 to Eq. (4) we obtain the
following values for its parameters: ~ω = 25039.8 ±
34.0; A = 12238.4 ± 34.0; BL = 323.4 ± 4.5; DL =

25.9 ± 4.5; CυL = 101.6 ± 4.5.
From Eqs. (4) and (5) we obtain that A = (~ω)2/4D ,

and thus D = 12807.9 ± 100.5. This means that
there is no bottomonium state with an energy above
12807.9 ± 100.5. Using the values of D and ~ω above
in Eq. (6) we obtain a/α = (2.60 ± 0.01)×10−2 f m, and
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Table 2: Radii of three states of bottomonium calculated with the use
of Eq. (8). The numbers in the particle names refer to the quantum
number n of QCD models.

(υ, L) Particle Radius ( f m)
(0, 0) Υ(1S ), ηb(1S ) 0.179 ± 0.003
(1, 0) Υ(2S ), ηb(2S ) 0.218 ± 0.003
(2, 0) Υ(3S ) 0.256 ± 0.003

from the value of BL we have that a = (0.16 ± 0.01) f m
which is a very reasonable figure since the Compton
wavelength of bottomonium is about 0.26 f m if we use
a constituent mass of 4.5 GeV/c2. Of course, we obtain
a very similar figure if we use the uncertainty princi-
ple. Using the above values of a and a/α we obtain
α = 6.15 ± 0.01.

As we showed above, a molecular potential is har-
monic about its minimum, and thus we can calculate the
value of the constant k = mω2 which can be written as
k = mc2(~ω)2/(~c)2 . Using the above values we obtain
k ≈ 3.68 × 104 GeV/ f m2 ≈ 5.9 × 1024 N/m which is a
quite fair number. For a distance of 0.2 f m it produces
a force F ≈ 109 N.

As it was shown above Kratzer and Morse potentials,
when expanded about their minima, yield Eq. (3). And
for such a potential Robinett [42] obtained the following
equation for the average value of position for S states

〈r〉υ = a +
3α~ω
2mω2a
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3a~ω
4αD
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2

)
(8)

where we have taken into account that λ = α/2a . We
did not calculate the radii of the states Υ(4S ), Υ(10860)
and Υ(11020) because these are states far from equi-
librium. Using the above values for the constants we
obtain the results shown in Tab. 2 for the radii of three
states of bottomonium.

We can also calculate the energies of the states
ηb(2S ), hb(1P) and hb(2P). Since the Hamiltonian does
not depend on spin, we can say that the difference in
energy between the states with υ = 1, L = 0 and the
states with υ = 0, L = 0 should be the same for states
with S = 0 or S = 1, and thus the energy of the state
ηb(2S ) should be about 9391.0±2.8+[10023.26±0.31−
(9460.30 ± 0.26)] = 9954.0 ± 3.4. We can calculate the
energy of the state hb(1P) in a similar way. The differ-
ence in energy between the degenerate level χb(1P) and
the state Υ(1S ) should be approximately the same be-
tween hb(1P) and ηb(1S ), that is, the energy of hb(1P)
is about 9390.9±2.8+[9901.60±0.5−(9460.30±0.26)] =

Table 3: The experimental and calculated levels of bottomonium. The
calculated values are in bold face. The number in each parenthesis of
the particle name refers to the value of the quantum number n of QCD
models which also appears in the 3rd column.

(υ, L) n2S+1LJ Particle Mass (MeV/c2)

(5, 0) 63S 1 Υ(11020) 11019 ± 8
(4, 0) 53S 1 Υ(10860) 10865 ± 8
(3, 0) 43S 1 Υ(4S ) 10579.4 ± 1.2
(2, L) 33PJ χb(3P) 10530 ± 5(stat.)

± 9(syst.)
(2, 0) 33S 1 Υ(3S ) 10355.2 ± 0.5
(1, 1) 23P2 χb2(2P) 10268.65 ± 0.55
(1, 1) 23P1 χb1(2P) 10255.46 ± 0.55
(1, 1) 23P0 χb0(2P) 10232.5 ± 0.6
(1, 1) 21P1 hb(2P) 10192.0 ± 0.8
(0, 2) 13D3 Υ3(1D)
(0, 2) 13D2 Υ2(1D) 10163.7 ± 1.4
(0, 2) 13D1 Υ1(1D)
(0, 2) 11D2 ηb(1D)
(1, 0) 23S 1 Υ(2S ) 10023.26 ± 0.31
(1, 0) 21S 0 ηb(2S ) 9953.86 ± 0.57
(0, 1) 13P2 χb2(1P) 9912.21 ± 0.40
(0, 1) 13P1 χb1(1P) 9892.76 ± 0.40
(0, 1) 13P0 χb0(1P) 9859.44 ± 0.52
(0, 1) 11P1 hb(1P) 9832.3 ± 3.2
(0, 0) 13S 1 Υ(1S ) 9460.30 ± 0.26
(0, 0) 11S 0 ηb(1S ) 9391.0 ± 2.8

9832.2 ± 3.6. Similarly, the energy of hb(2P) is about
9953.86 ± 3.37 + [10261.4 ± 0.6 − (1023.26 ± 0.31)] =
10192.0 ± 4.3. We did not include in the fitting the lev-
els above χb(2P) because it is well known that molec-
ular potentials do not describe well very high levels in
energy because for such levels the rigid rotator approxi-
mation cannot be used. Tab. 3 presents the experimental
values [34] of the energies of states of bottomonium and
those that were calculated above.

5. Conclusion

It is shown that the levels of bottomonium up to
χb(2P) states can be described by a molecular poten-
tial. The fitting made possible the calculation of the pa-
rameters of the molecular potential, and prediction of
the energies and radii of some states. The above results
add important information for the understanding of bot-
tomonium.
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