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OUTINE OF TALK 

 

1) Brief comments on the works 

in the area; 

2) Why the Kratzer molecular 

potential as an effective 

potential for the overall  

interaction in bottomonium in 

the description of its states 

below threshold? 

3) Fitting of such states; 

4) Calculation of the rotational 

contribution of P states; 

5) Estimation of the sizes of 1P 

and 2P states; 

6) Estimation of the coupling 

constant. 
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SOME IMPORTANT REMARKS 
 

A) The static potential plays an important role in 

the description of heavy quarks.  

B) Pioneering work of Eichten et al.
1
 was 

followed by many other works.  

C) After more than 30 years some important 

features of the static interaction in QCD are 

not yet completely understood.  

D) That is one of the reasons why a large 

number of approximated methods and 

effective potentials have been proposed for 

the description of the overall interaction in 

quarkonia
1-31

 . This is a large number but is 

not exhaustive at all of the enormous effort 

developed in the field.  All the data used 

below for the energies of the bb  states were 

taken from Nakamura et al.(PDG)
32
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The Kratzer molecular potential 
 

The vibration-rotation spectra of diatomic molecules 

can be excellently described by the Kratzer  

potential
33-35 
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in which D  is the minimum of the well and a  is the 

distance where V D  . We could have chosen Morse 

molecular potential, but Kratzer´s is more suitable for 

our purpose due to its explicit functional form: a) its 

1
st
 term is an attractive QCD-like term, and b) its 2

nd
 

term takes care of the well-known repulsion of the 

strong force for small distances (on this see, for 

example, S. Aoki
30

 (R. Jastrow
41

)). We do not have to 

worry about a confining term because we are only 

dealing with states below threshold and the 

Coulombian-like term increases with the distance. 
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 Solution of the  Schrödinger Equation for V(r) 

 

Using non-relativistic quantum mechanics we obtain 

the energy levels
33 
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where ,v L  are the integers 0,1,2,3,... and , , , VRC h A A  

are constants, and   
2

2RE 


 is a constant within the 

same L , in which   is the moment of inertia. The first 

term is a constant related to the depth of the potential, 

the second term describes harmonic vibrations, the 

third term takes into account the anharmonicity of the 

potential, the fourth term describes rotations with 

constant moment of inertia and the fifth term 

represents the first correction to the coupling between 

vibrations and rotations. In this work we disregard the 

fifth term. In 2007 Setare and Karimi (42) have shown 

that SU(2) is the dynamical group associated with the 

bound region of the spectrum. 
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The spin-spin interaction 
 

The spin-spin interaction is given by 

 

 
1 2

1 2

1 2

s s S

s s
E A

m m



   (3) 

 

in which SA  is a constant, 1m  and 2m  are the constituent 

masses of the corresponding quarks and  
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1
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where S  is the total spin. For the bb  system 
1 2s sE  is in the 

range of 50 MeV and is,  thus, very significant. 
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Fitting bottomonium levels to the Kratzer 

potential 
 

1) We  deal only with the levels below threshold, that 

is, up to the 3S  levels.  

 

2) We take out the spin-spin interaction energy out 

from the hyperfine doublets [ (1 )b S , (1 )S ], 

[ (2 )b S , (2 )S ], [ (3 )b S , (3 )S ] and obtain the 3 

degenerate levels 0 , 1 , and 2  with respective 

energies 9442.3 MeV, 10014.2 MeV, and 10348.9 

MeV. 

 

 

3) Fitting these 3 levels (L=0) to the potential we obtain 

the constants 9067.4MeV
bb

C  , 809.1MeV
bb

h  , and 

118.6MeV
bb

A  . 

 

 
4) Now we take into account the centrifugal term of the 

potential and consider the ( )b P  states. Taking into 

account the spin-orbit contribution 
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 ( 1) ( 1) ( 1)SLE J J L L S S         we obtain 

1
459.3MeV

Rbb
E   for the states 3

0 0(1 )b P , 3

1 0(1 )b P , 

and 3

2 0(1 )b P ; and 
2

123.6MeV
Rbb

E  for the states 

3

0 0(2 )b P , 3

1 0(2 )b P  and 3

2 0(2 )b P . 

 

5) Checking the consistency of the calculations 

As the third term in Eq. (3)  cannot be larger than the 

second term, we should always have 

1
1 2.9

2

bb

bb

h
v

A

 
   

 
, and thus 0,1,2v  ; 

 

6) Calculation of the parameters of the potential 

Relating the constants above to the parameters of the 

potential a and D we find 

D=10.500MeV 

a=0.48fm 

 

7) Estimation of the coupling constants 

Using the harmonic constant and the calculated 

constants we obtain the coupling constants of 

about  

a) 10.3 for the hadronic coupling constant; 
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b)  36.5GeV/fm
2
 for the overall effective coupling 

(from the harmonic part). 

These figures are completely reasonable. 

Altmeyer et al. (42) report g=4.2+/-1.8 for 

pions. The experimental value is about 6.08. 
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Estimation of the sizes of 1P and 2P  states 

of bottomonium 
 

Using the above values of 
Rbb

E , the reduced mass 

2500MeV
bb

M  , and defining the sizes of the mesons by  

 
1

2

2

1

2bb

bb Rbb

R
r M E



 
  
 
 

 

 

 

Table 1. Estimation of radii for  P states of bottomonium 

below threshold 

 

Meson  Radius ( )fm  

0 (1 )b P  0.257  

1 (1 )b P  0.257  

2 (1 )b P  0.257  

0 (2 )b P  0.350  

1 (2 )b P  0.350  

2 (2 )b P  0.350  

 

 

These values are much smaller than those found in Ref (31) 
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But these values are quite reasonable as is shown below: 

 

having in mind that for    and K   Povh and Hüfner36  have 

reported radii of about 0.66 fm and 0.61fm, respectively. The 

above values are much smaller than those found in Ref. (31). 

 

R. Tarrach (37) reports 0.68 fm for charged pions.  

 

C.-W. Hwang (39) reports 0.66 fm for charged pions, 0.59 

fm for charged kaons, and 0.43 fm for D(+).  

 

The experimental results for charged  pions (39) are 0.66 fm 

and for charged kaons are 0.58 fm (40). 

Also, for    and K 
 Povh and Hüfner36  have reported radii 

of about 0.66 fm and 0.61fm, respectively 
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Summary of results 

 

1) The levels of bottomonium below 

threshold can be fitted to a Kratzer 

molecular potential which is a 

completely new approach; 

2) This effective potential can have a 

broader use in interactions involving 

bottomonium; 

3) We calculate the rotational 

contributions for L=1 and L=2 levels; 

4) We make an estimation of the sizes of  

P states; 

5) A very reasonable estimation of the 

hadronic coupling constant is achieved. 
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DETAILS OF CALCULATIONS 
 

 

4.   Fitting bottomonium levels to the Kratzer potential 

 

We  deal only with the levels below threshold, that is, up to 

the 3S  levels. The energy difference of the hyperfine 

doublets (1 )b S  and (1 )S  due to the spin-spin interaction is  

9460.3 9390.9 69.4MeV.   Removing the splitting we 

obtain a degenerate level 0  with an energy of  

   9460.3 1/ 4 69.4 9390.9 3 / 4 69.4 9442.3MeV.     

Since 2S  and 3S  states are also spin-spin interaction  

hyperfine doublets (see, for example, Bai-Qing, L. and 

Kuang-Ta, C.35). Using for the energies of (2 )b S  and 

(3 )b S  the predicted values from Ref. 35, 9987.0MeV  and 

10330MeV, respectively, we take the spin-spin energy off 

and obtain the degenerate levels  1  and 2  with respective 

energies  10023.3 1/ 4 36.3 10014.2MeV  , and 

 10355.2 1/ 4 25.2=10348.9MeV.    

We apply Eq. (3) to S  states to avoid the fourth term, 

initially, because for these states 0.L   Disregarding the 

fifth term and applying Eq. (3) to the three levels 0 , 1 , and 

2 , we have 
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C h A
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2
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1 1 10014.2
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C h A
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   

 (6) 

 

2
1 1

2 2 10348.9
2 2bb bb bb

C h A
   

       
   

 (7) 

from which we obtain 9067.4MeV
bb

C  , 809.1MeV
bb

h  , 

and 118.6MeV
bb

A  . 

 Let us now take into account the centrifugal term in Eq. 

(3). For this purpose we work with the ( )b P  states and take 

into account the spin-orbit interaction term 

 

  ( 1) ( 1) ( 1) .SLE J J L L S S         (8) 

 

  Applying Eq. (9)  to 3

0 0(1 )b P , 3

1 0(1 )b P  and 3

2 0(1 )b P  

we obtain 

 

  1 1 0 1 2 1 2 9859.4PE        (9) 

  1 1 1 2 1 2 1 2 9892.8PE         (10) 

  1 1 2 3 1 2 1 2 9912.2PE         (11) 

 

where 1PE  is the energy of the degenerate level 1P . We 

obtain the average values  1 10.1MeV  , 1 9901.6MeVPE  . 

Thus, we have 
1
1(1 1) 9901.6 9442.3 459.3MeV

Rbb
E     , 

and so, 
1

229.7MeV
Rbb

E   for 0n  . And applying Eq. (9) to 
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3

0 0(2 )b P , 3

1 0(2 )b P  and 3

2 0(2 )b P  we obtain, similarly, the 

averages 2 10261.4MeVPE  , 2 6.9MeV  , where 2PE  is 

the energy of the degenerate level 2P .  Hence, we have 

2
1(1 1) 10261.4 10014.2 247.2MeV

Rbb
E     , and then 

2
123.6MeV

Rbb
E   for 1n  . 

Let us now check the consistence of our calculation. As 

the third term in Eq. (3)  cannot be larger than the second 

term, we should always have 

 

 
1

1
2

bb

bb

h
n

A

 
  

 
 (12) 

 

where n  is the number of states below threshold. Inserting 

into this equation the figures obtained above we have 2.91n   

which is quite consistent. 
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5 The sizes of the states of bottomonium below threshold 

 

Using the above values of 
Rbb

E , the reduced mass 

2500MeV
bb

M  , and defining the sizes of the mesons by  

 

 

1
2

2

1

2bb

bb Rbb

R
r M E



 
  
 
 

 (13) 

                                                                                     

and remembering that 
bb

R  is the same within the same L , we 

obtain the following results  

 

 

Table 1. Calculated radii for  P states of bottomonium below 

threshold 

 

Meson  Radius ( )fm  

0 (1 )b P  0.257  

1 (1 )b P  0.257  

2 (1 )b P  0.257  

0 (2 )b P  0.350  

1 (2 )b P  0.350  

2 (2 )b P  0.350  
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These values are quite reasonable having in mind that for    

and K   Povh and Hüfner36  have reported radii of about 0.66 

fm and 0.61fm , respectively. The above values are much 

smaller than those found in Ref. (35). 
 

 

 

 

 

 

 
 

 

 

 

 

 


