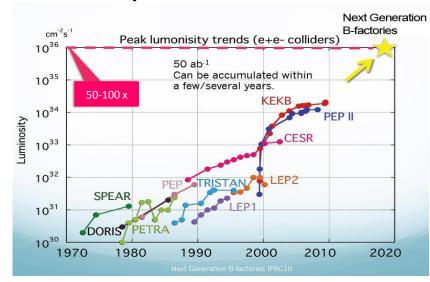
The SuperB project

Matteo Rama Laboratori Nazionali di Frascati


BEACH 2012, July 21-28 2012

Outline

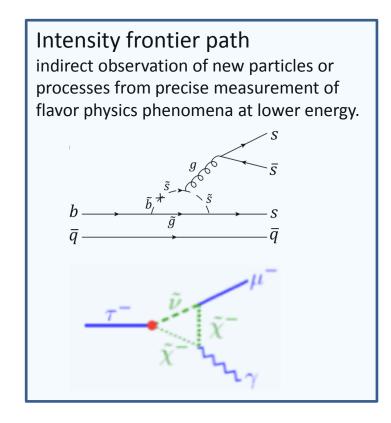
- Physics motivation
- Accelerator
- Detector
- Approval process

SuperB

- Next generation, high luminosity asymmetric e⁺e⁻ collider
 - nominal CM energy of 10.58 GeV/c² at Y(4S) resonance
 - possibility to run at charm threshold ($\psi(3770)$) and up to Y(5S)
- Baseline luminosity $L = 1 \times 10^{36} cm^{-2}s^{-1}$
 - − ~100 times the peak luminosity at previous B factories
- $75 ab^{-1}$ in 5 years at baseline luminosity
 - $-80 \times 10^9 B\overline{B}$ pairs
 - $-100 \times 10^9 e^+e^- \rightarrow c\bar{c}$ events
 - $-70 \times 10^9 \tau^+ \tau^-$ pairs
- longitudinal polarization of e⁻ beam (fraction 60-80%)
- To be built near Rome, Italy

The role of a Super Flavor Factory

Search for physics beyond the SM through the *intensity frontier* path as opposed to the *energy frontier* path of ATLAS and CMS


Scenarios:

LHC finds New Physics (NP)

- Shed light on NP flavor structure and couplings
- Indirect searches of heavier states

LHC does not find NP

- Look for indirect NP signals
- Exclude regions in NP parameter space

SuperB vs other next generation B factories

Proposed LHCb upgrade:

- Physics programs significantly complementary
- SuperB: clean e⁺e⁻ environment
 - allows also reconstruction of final states with neutrinos or multiple photons
- LHCb: large $b\overline{b}$ production cross section and large boost of B hadrons
 - large amount of B hadrons, time-dependent CPV of B_{s.} hadronic environment

SuperKEKB/Belle II:

- e⁺e⁻ collider with physics programs largely overlapping
- L_{SuperB} = $1 \times 10^{36} cm^{-2}s^{-1}$ vs L_{SuperKEKB} = $0.8 \times 10^{36} cm^{-2}s^{-1}$
- Belle II expected to start earlier
- SuperB additional features
 - polarized e⁻ beam
 - possibility of operating near the $\psi(3770)$ threshold

The SuperB physics program

$$\int L dt = 75 ab^{-1}:$$

$$80 \times 10^9 B\overline{B} \text{ pairs}$$

$$100 \times 10^9 e^+e^- \rightarrow c\overline{c} \text{ events}$$

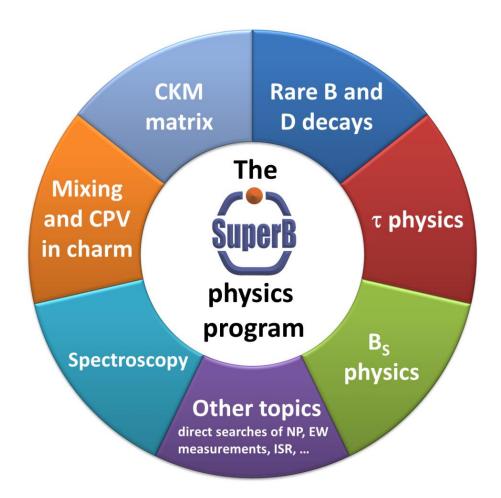
$$70 \times 10^9 \tau^+\tau^- \text{ pairs}$$

Physics case documented in:

SuperB Conceptual Design Report

arXiv:0709.0451

NP at the Super Flavor Factory

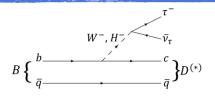

arXiv:0810.1312

SuperB physics progress report

arXiv:1008.1541

The impact of SuperB on flavour physics

arXiv:1109.5028



A few examples in following slides

$B \to D^{(*)} \tau \nu$ and $B \to \tau \nu$

BaBar measurement of

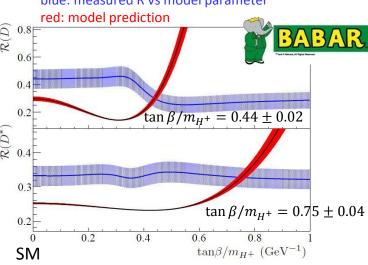
$$\bar{B} \rightarrow D^{(*)} \tau^- \bar{\nu}_{\tau}$$
 , 0.43 ab⁻¹

$$R(D) = \frac{BF(\bar{B} \to D\tau^- \bar{\nu}_{\tau})}{BF(\bar{B} \to Dl^- \bar{\nu}_{l})} = 0.440 \pm 0.072$$

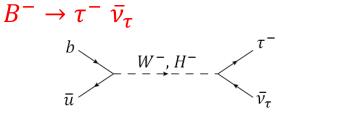
$$0.297 \pm 0.017$$

SM calc.

$$R(D^*) = \frac{BF(\bar{B} \to D^* \tau^- \bar{\nu}_{\tau})}{BF(\bar{B} \to D^* l^- \bar{\nu}_{l})} = 0.332 \pm 0.029$$


$$0.252 \pm 0.003$$

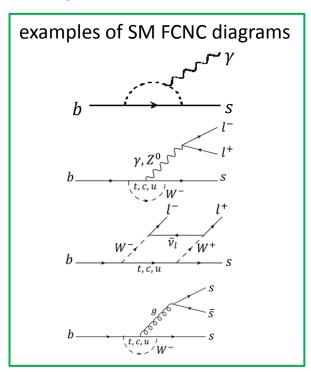
 $R(D) + R(D^*)$ inconsistent with SM (3.4 σ) and exclude the type II 2 Higgs doublet model with 99.8% CL


see G. Vasseur tomorrow

arXiv:1205.5442 sub. to PRL

blue: measured R vs model parameter

More data needed. Cannot be measured at hadron colliders (neutrinos in final state)



			-		
$BF_{2HDM-II} =$	BF_{SM}	× (1 -	- tan β	$^{2}m_{B}^{2}/r_{B}$	$(n_H^2)^2$

decay mode	expected BF_{SM}	2012 $\sigma(BF)/BF_{SM}$	SuperB 75ab $^{ ext{-}1}$ $\sigma(BF)/BF_{SM}$
$B^- \to \tau^- \; \bar{\nu}_\tau$	~10^-4	20%	4%
$B^- \to \mu^- \; \bar{\nu}_{\mu}$	\sim 5 × 10 ⁻⁷		5%
$\overline{\mathrm{B}} \to \mathrm{D}^{(*)} \tau^- \bar{\nu}_{\tau}$	~10 ⁻²	10%	2%

Flavor changing neutral currents

$b \rightarrow s\gamma, b \rightarrow sl^+l^-, b \rightarrow s\nu\bar{\nu}, b \rightarrow s\bar{s}s,...$ sensitive probes of NP

extracted from arXiv:1109.5028

Observable/mode	Current	Super B	theory
	now	$75 {\rm ab^{-1}}$	now
$BR(B \to K^{*+} \nu \overline{\nu}) \ (\times 10^{-6})$	< 80	1.1	6.8 ± 1.1
$BR(B \to K^+ \nu \overline{\nu}) \ (\times 10^{-6})$	< 160	0.7	3.6 ± 0.5
$BR(B \to X_s \gamma) \ (\times 10^{-4})$	3.55 ± 0.26	0.11	3.15 ± 0.23
$A_{CP}(B \to X_{(s+d)}\gamma)$	0.060 ± 0.060	0.02	$\sim 10^{-6}$
$B \to K^* \mu^+ \mu^-$ (events)	250	10-15k	-
$BR(B \to K^* \mu^+ \mu^-) \ (\times 10^{-6})$	1.15 ± 0.16	0.06	1.19 ± 0.39
$B \to K^* e^+ e^-$ (events)	165	10-15k	-
$BR(B \to K^* e^+ e^-) \ (\times 10^{-6})$	1.09 ± 0.17	0.05	1.19 ± 0.39
$A_{FB}(B \to K^* \ell^+ \ell^-)$	0.27 ± 0.14	0.04	-0.089 ± 0.020
$B \to X_s \ell^+ \ell^- \text{ (events)}$	280	8,600	_
$BR(B \to X_s \ell^+ \ell^-) \ (\times 10^{-6})$	3.66 ± 0.77	0.08	1.59 ± 0.11
$S \text{ in } B \to K_S^0 \pi^0 \gamma$	-0.15 ± 0.20	0.03	-0.1 to 0.1
$S \text{ in } B \to \eta' K^0$	0.59 ± 0.07	0.01	± 0.015
$S \text{ in } B \to \phi K^0$	0.56 ± 0.17	0.02	± 0.02

Complementarity with LHCb. Example:

- LHCb can measure $B^+ \to K^+ \mu^+ \mu^-$, $B^0 \to K^{*0} \mu^+ \mu^-$, $B^0 \to K^{*0} \gamma$ very precisely
- In addition SuperB can extend the set of reconstructed modes including

$$B \rightarrow K^{(*)} l^+ l^- \ (l=e,\mu), B \rightarrow X_S l^+ l^- (l=e,\mu), B \rightarrow X_S \gamma$$

 $X_{\rm S}$ = inclusive

improved precision, access to additional NP-sensitive observables

MSSM: flavor violation in quark sector

example: MSSM with generic squark mass matrices

LHCb, SuperB

$$M_{\tilde{d}}^{2} \approx \begin{pmatrix} m_{\tilde{d}_{L}}^{2} & m_{\tilde{d}}(A_{d} - \mu \tan \beta) & (\Delta_{12}^{d})_{LL} & (\Delta_{12}^{d})_{LR} & (\Delta_{13}^{d})_{LL} & (\Delta_{13}^{d})_{LR} \\ \downarrow \mathcal{H}_{C, ILC} - \mathcal{H}_{E frontier}^{2} & m_{\tilde{s}_{L}}^{2} & m_{\tilde{s}}(A_{s} - \mu \tan \beta) & (\Delta_{23}^{d})_{LL} & (\Delta_{23}^{d})_{LR} \\ & & & & & & & & & & & & \\ \end{pmatrix} \begin{pmatrix} m_{\tilde{d}_{L}}^{2} & m_{\tilde{s}}(A_{s} - \mu \tan \beta) & (\Delta_{13}^{d})_{LR} & (\Delta_{13}^{d})_{RR} & (\Delta_{23}^{d})_{LR} & (\Delta_{23}^{d})_{LR} \\ & & & & & & & & & \\ (\Delta_{23}^{d})_{LL} & (\Delta_{23}^{d})_{LR} & (\Delta_{23}^{d})_{RR} & & & \\ & & & & & & & & \\ m_{\tilde{b}_{L}}^{2} & m_{b}(A_{b} - \mu \tan \beta) & & & & \\ m_{\tilde{b}_{R}}^{2} & & & & & & \\ \end{pmatrix}$$

and similarly for $M_{\widetilde{u}}^2$

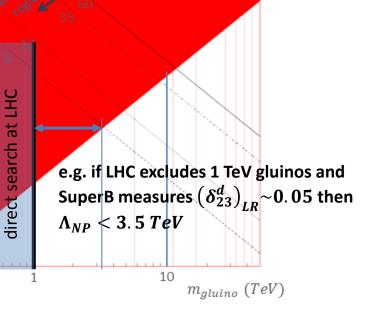
NP scale: $m_{\tilde{q}}$

Flavor violating and CP violating couplings: $\left(\delta^d_{ij}\right)_{AB} = \left(\Delta^d_{ij}\right)_{AB}/m_{\tilde{q}}^2$

- the energy frontier experiments can probe the diagonal elements
- flavor physics experiments are required to probe off-diagonal terms

Constraints from $b \rightarrow s\gamma$, $b \rightarrow sl^+l^-$

example: SuperB can constrain the $(\delta_{23}^d)_{ii}$ using


- $\blacksquare \mathcal{B}(B \to X_s \gamma)$
- $\mathcal{B}(B o X_s\ell^+\ell^-)$ (dataset: 75ab⁻¹)

 $A_{CP}(B \to X_s \gamma)$ reconstructed $Im(\delta_{23}^d)_{LR}$ $\left| \left(\delta_{23}^d \right)_{LR} \right| = 0.026 \pm 0.005$ $\left| \left(\delta_{23}^d \right)_{LR} \right|$ $\arg(\delta_{23}^{d})_{LR} = (44.5 \pm 2.6)^{\circ}$ 0.03 0.02 0.05 0.01 0 all together -0.01-0.01 0.02 $\operatorname{Re}(\delta_{23}^d)_{LR}$ reconstruction of $\left(\delta^d_{23}\right)_{LR}=0.028e^{i\pi/4}$

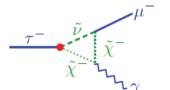
for $\Lambda_{NP}=m_{\widetilde{q}}=m_{\widetilde{q}}=1~TeV$

L.J. Hall et al, Nucl Phys B 267 (1986) M. Ciuchini et al, PRD67,075016 (2003) arXiv:0709.0451

red region: $\left(\delta^d_{23}\right)_{LR}$ measured with $>3\sigma$ significance (with 75ab⁻¹)

10-1

10-2

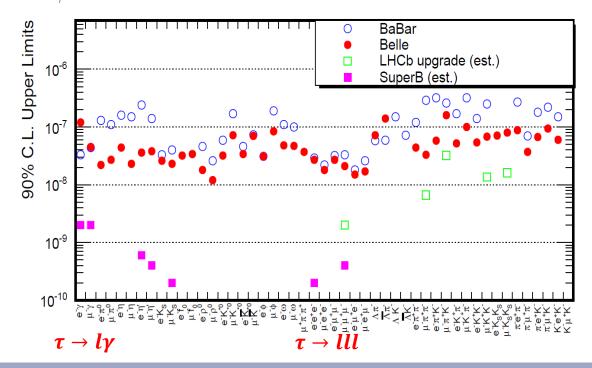

hypo: excluded by

τ physics

$$\sigma(e^+e^- \to \tau^+\tau^-)_{\sqrt{S}=M(Y(4S))} \sim \sigma(e^+e^- \to Y(4S) \to B\bar{B})$$
 SuperB is a tau factory

Lepton flavor violation

v mixing leads to $BF \sim 10^{-54}$ \rightarrow Enhancement to observable levels possible with new physics

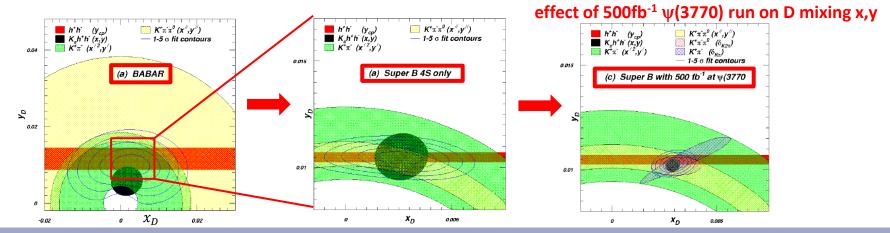


- CP violation
- precision $|V_{us}|$ measurement
- τ g-2
- τ EDM

Up to two orders of magnitude improvement at SuperB over current limits

Hadron machines are in general not competitive

e- beam polarization helps suppress background or discriminate among NP models


Charm physics

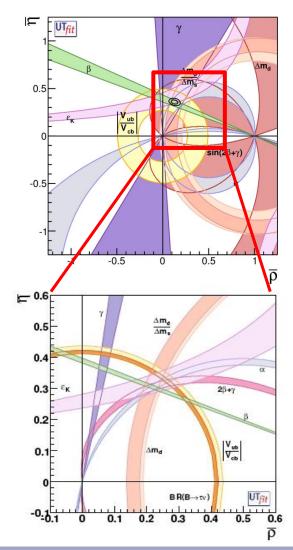
 $\sigma(e^+e^- \to c\bar{c})_{\sqrt{s}=M(Y(4S))} \sim 1.3 \ \sigma(e^+e^- \to Y(4S) \to B\bar{B})$ SuperB is a charm factory possible 1ab⁻¹ run at $\psi(3770)$ (1 year) extends the charm physics program

- search for CPV in D mixing
 - 10x reduction of $\sigma(|q/p|)$ and $\sigma(\arg(q/p))$
- precision measurement of D mixing parameters
- study of direct CPV in charm decays
 - DCS, SCS, multibody, ...
 - can shed light on nature of $\Delta A_{CP}(K^-K^+,\pi^+\pi^-)$ with related channels ,e.g. $D\to\rho\rho$, $D\to\pi\pi$, $D\to multibody$

- search for rare or forbidden charm decays
 - e.g. D $\rightarrow \gamma \gamma$, $D \rightarrow l^+ l^-$, $LFV D \rightarrow e^+ \mu^-$, ...

Precision CKM constraints

Unitarity triangle angles


$$-\sigma(\alpha)=1^{\circ}$$

$$-\sigma(\beta) = 0.1^{\circ}$$

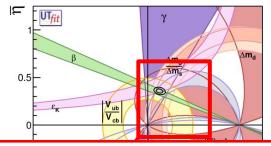
$$-\sigma(\gamma)=1^{\circ}$$

CKM matrix elements

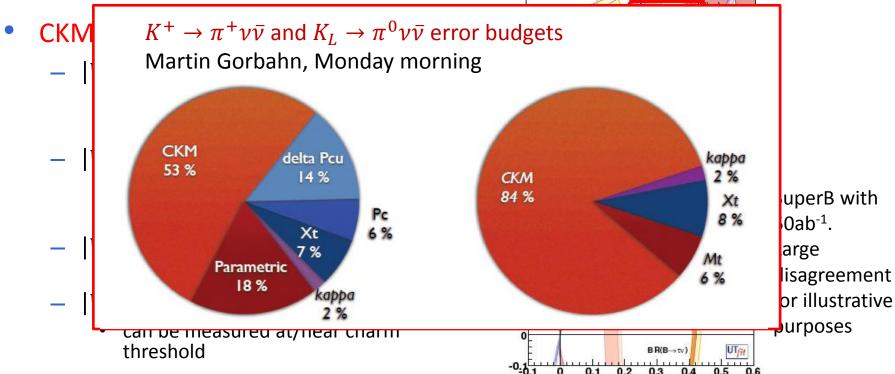
- $|V_{ub}|$
 - inclusive $\sigma = 2\%$
 - exclusive $\sigma = 3\%$
- $|V_{cb}|$
 - inclusive $\sigma = 0.5\%$
 - exclusive $\sigma = 1\%$
- $|V_{us}|$
 - can be measured using τ decays
- $|V_{cd}|$ and $|V_{cs}|$
 - can be measured at/near charm threshold

June 2012

SuperB with 50ab⁻¹. Large disagreement for illustrative purposes


Precision CKM constraints

Unitarity triangle angles


$$-\sigma(\alpha)=1^{\circ}$$

$$-\sigma(\beta) = 0.1^{\circ}$$

$$-\sigma(\gamma)=1^{\circ}$$

June 2012

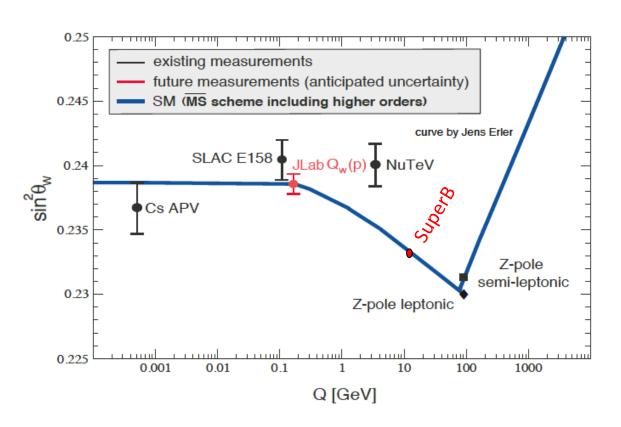
Interplay between measurements and theory

Need to combine flavor measurements to disclose NP nature

Altmannshofer et al, Nucl. Phys. B830, 17 (2010), 0909.1333. See also arXiv:1008.1541

	Observable/mode	H^+	MFV	non-MFV	NP	Right-handed	LTH			SUS	Y	
	,	$\operatorname{high} \tan\beta$			Z penguins	currents		AC	RVV2	AKM	$ \delta LL $	FBMSSM
\rightarrow	$ au o \mu\gamma$							***	***	*	***	***
\rightarrow	$ au o \ell\ell\ell$						***					
	$B o au u, \mu u$	★★★ (CKM)										
\rightarrow	$B o K^{(*)+} u \overline{ u}$			*	***			*	*	*	*	*
\rightarrow	$S ext{ in } B o K_S^0 \pi^0 \gamma$					***						
\rightarrow	S in other penguin modes			* * *(CKM)		***		***	**	*	***	***
	$A_{CP}(B o X_s\gamma)$			***		**		*	*	*	***	***
	$BR(B o X_s\gamma)$		***	*		*						
	$BR(B o X_s\ell\ell)$			*	*	*						
\rightarrow	$B \to K^{(*)}\ell\ell$ (FB Asym)							*	*	*	***	***
	$B_s o \mu \mu$							***	***	***	***	***
	β_s from $B_s \to J/\psi \phi$							***	***	***	*	*
\rightarrow	a_{sl}						***					
\rightarrow	Charm mixing							***	*	*	*	*
\rightarrow	CPV in Charm	**									***	

→ : measured at SuperB


*** large effects

visible but small effects

★ negligible effects

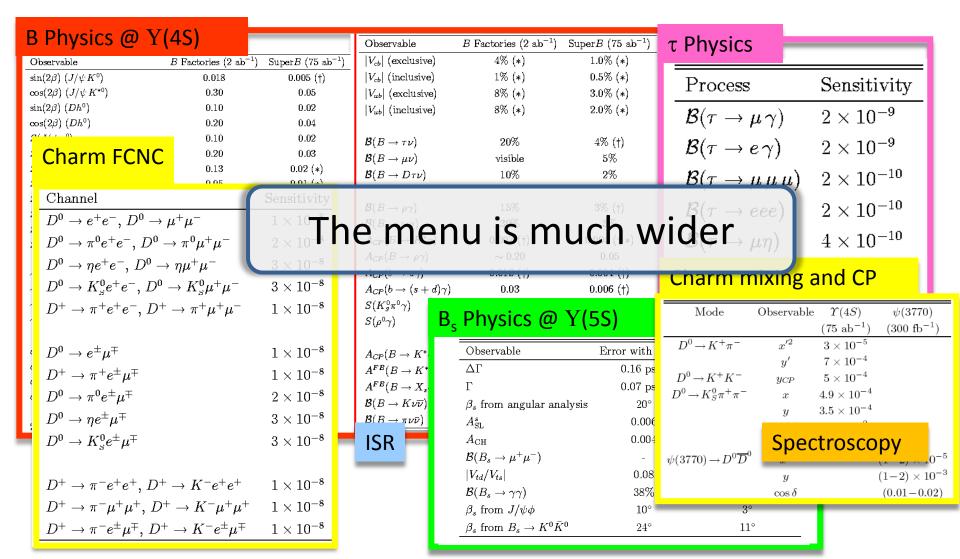
Precision electroweak measurements

- $\sin^2 \theta_W$ can be measured with polarized e beam
 - $-\sqrt{s}=M(Y(4S))$ is theoretically clean, cf. b fragmentation at Z^0 pole

Measure LR asymmetry in

$$e^{+}e^{-} \rightarrow b\overline{b}$$

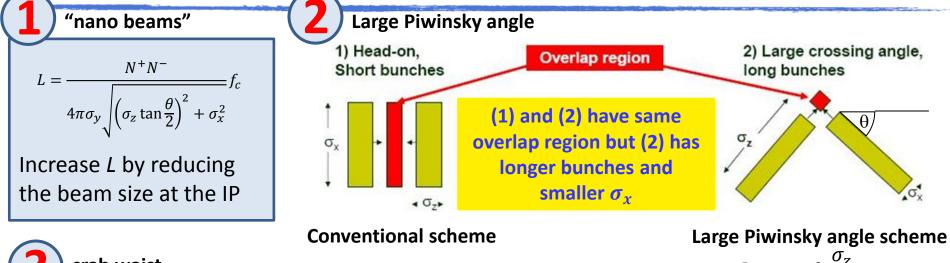
$$e^{+}e^{-} \rightarrow c\overline{c}$$

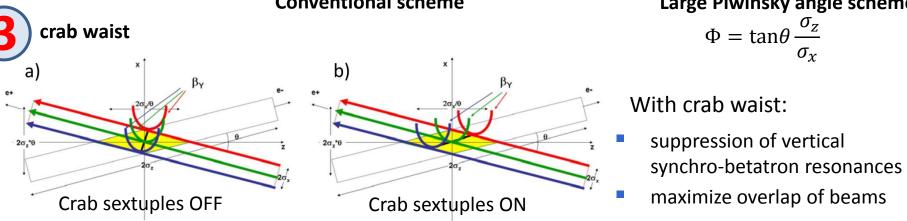

$$e^{+}e^{-} \rightarrow \tau^{+}\tau^{-}$$

$$e^{+}e^{-} \rightarrow \mu^{+}\mu^{-}$$

at the Y(4S) to same precision as LEP/SLC at the Z^0 pole.

Complements measurements planned/underway at lower energies (QWeak/MESA).


A rich physics program



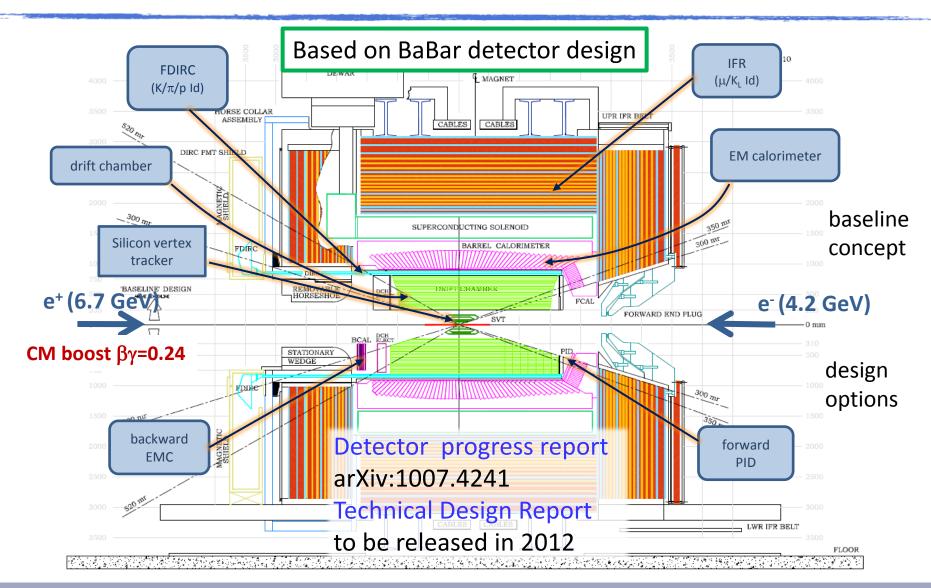
SuperB accelerator concept

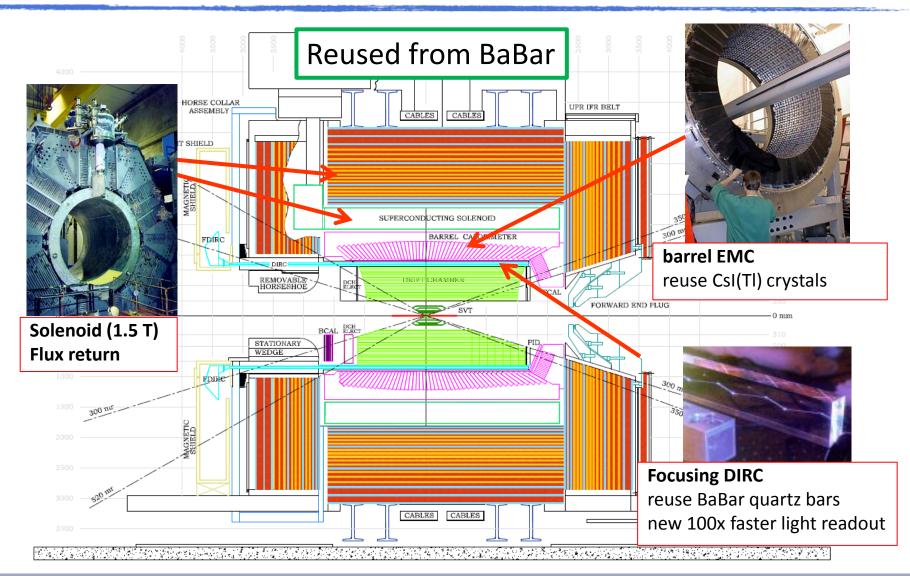
- A 2 rings, asymmetric energies collider (e⁻ 4.2 GeV, e⁺ 6.7 GeV)
 - large Piwinsky angle and crab waist collision scheme
 - ultra low emittance lattices ideas taken from ILC design
 - target baseline luminosity 10³⁶ cm⁻² s⁻¹ at Y(4S)
 - longitudinally polarized e⁻ beam (fraction 60-80%)
 - possibility to run down to charm threshold with L=10³⁵ cm⁻² s⁻¹
 - beam currents similar to PEP-II (RF power 17MW, limited beam background)
- Design criteria:
 - minimize building costs
 - minimize running cost
 - reuse some parts of PEP-II (BaBar B-factory)
- SuperB may host a hard X-FEL
 - using the SuperB linac
 - no interference with flavor factory operations

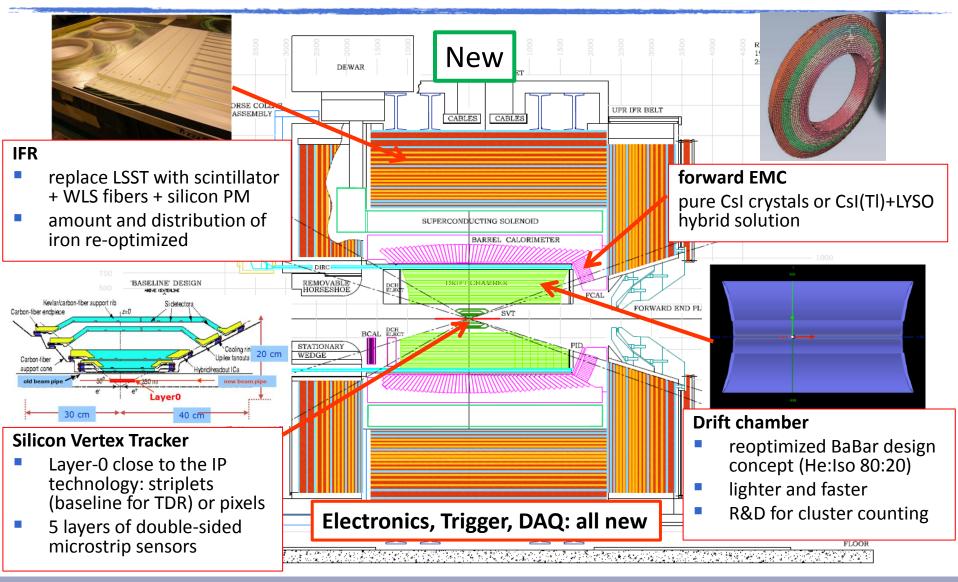
Collision scheme

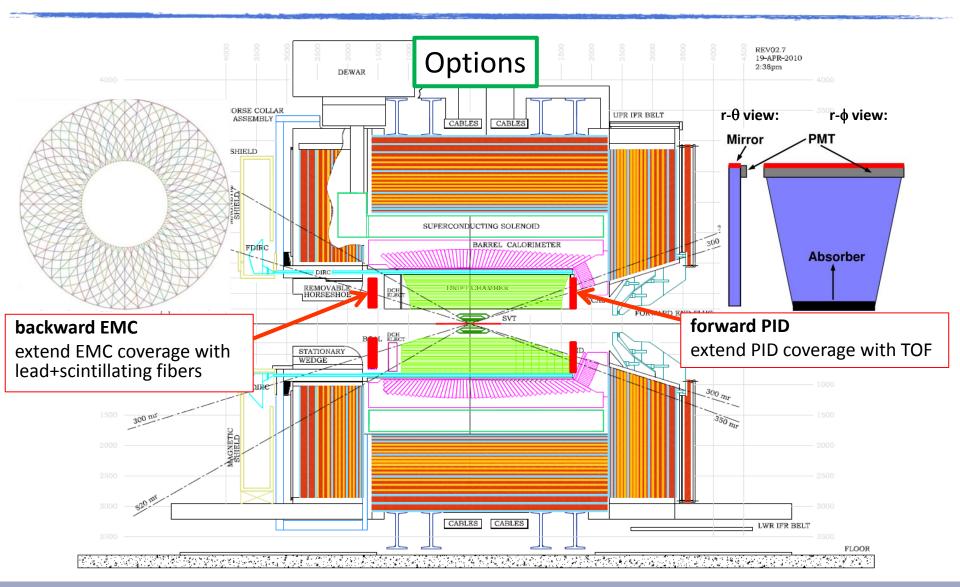
Collision scheme with large Piwinsky angle + crab waist successfully tested at DAFNE in 2009 (3x luminosity increase with CW ON). New tests ongoing at DAFNE with KLOE-2 installed (0.5 T solenoidal magnetic field ON)

Parameter table

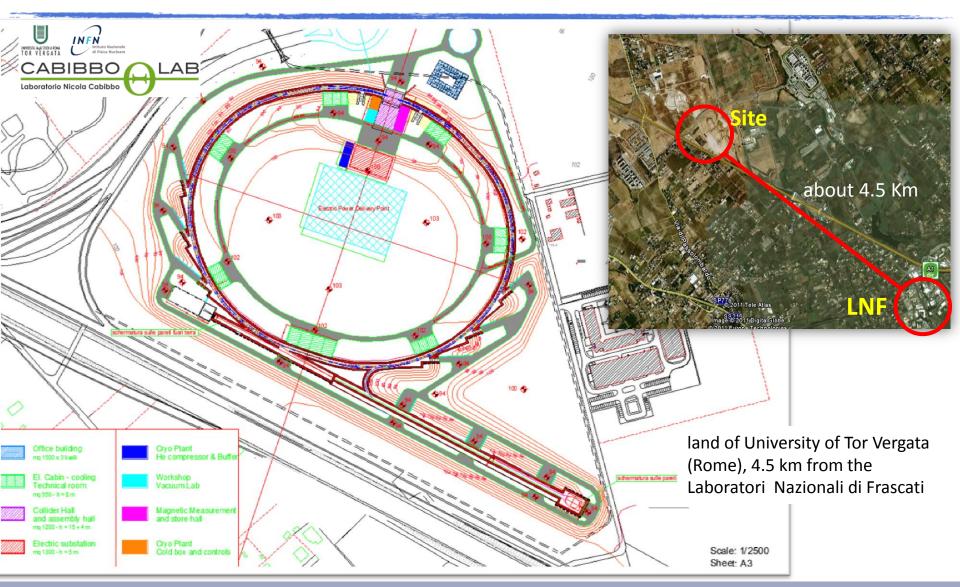

- Baseline + 2 options
 - Lower emittance
 - Higher currents
- charm threshold option with L=10³⁵ cm⁻²s⁻¹


- RF power includes
 - Synchrotron radiation
 - High Order Modes


Accelerator progress report: arXiv:1009.6178


TDR expected in 2013

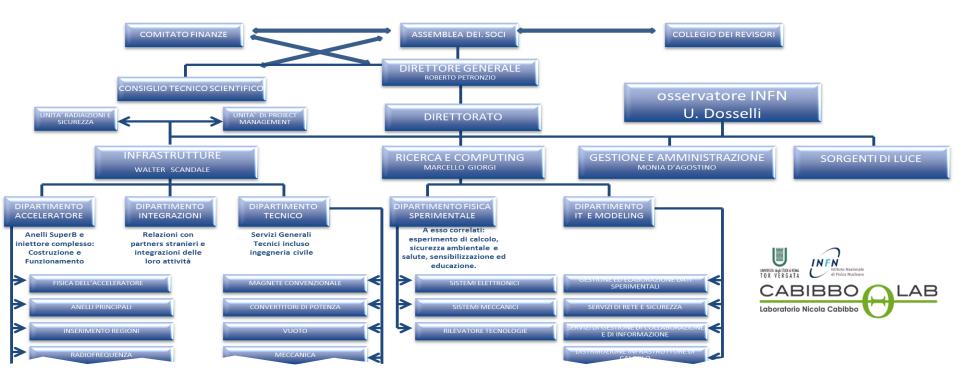
		Base Line Low Emittance High Current					τ/charm		
Parameter	Units							HER (e+)	
Parameter (1036)		HER (e+)	LEK (e-)	HER (e+)	LEK (e-)	HER (e+)	LER (e-)	nek (e+)	LER (e-)
LUMINOSITY (10 ³⁶)	cm ⁻² s ⁻¹	0.7	4.10	0.7	4.10	6.7	4 1 0	2.50	1.01
Energy	GeV	6.7	4.18	6.7	4.18	6.7	4.18	2.58	1.61
Circumference	m		8.4		8.4	1258.4		1258.4	
X-Angle (full)	mrad		0	60		60		60	
Piwinski angle	rad	20.80	16.91	29.42	23.91	13.12	10.67	8.00	6.50
β _x @ IP	cm	2.6	3.2	2.6	3.2	5.06	6.22	6.76	8.32
β _v @ IP	cm	0.0253	0.0205	0.0179	0.0145	0.0292	0.0237	0.0658	0.0533
Coupling (full current)	%	0.25	0.25	0.25	0.25	0.5	0.5	0.25	0.25
ϵ_x (without IBS)	nm	1.97	1.82	1.00	0.91	1.97	1.82	1.97	1.82
ε _x (with IBS)	nm	2.00	2.46	1.00	1.23	2.00	2.46	5.20	6.4
ϵ_{y}	pm	5	6.15	2.5	3.075	10	12.3	13	16
σ _x @ IP	μm	7.211	8.872	5.099	6.274	10.060	12.370	18.749	23.076
σ _y @ IP	μm	0.036	0.036	0.021	0.021	0.054	0.054	0.092	0.092
Σ_{x}	μm	11.433		8.085		15.944		29.732	
Σ_{y}	μm	0.050		0.030		0.076		0.131	
σ _L (0 current)	mm	4.69	4.29	4.73	4.34	4.03	3.65	4.75	4.36
σ_L (full current)	mm	5	5	5	5	4.4	4.4	5	5
Beam current	mA	1892	2447	1460	1888	3094	4000	1365	1766
Buckets distance	#	2		2		1		1	
Buckets distance	ns	4.20		4.20		2.10		2.10	
lon gap	%	2		2		2		2	
RF frequency	MHz	47		476 476			476		
Harmonic number			98	1998 1998		1998			
Number of bunches		46		465		931		931	
N. Particle/bunch (10 ¹⁰)		5.08	6.56	3.92	5.06	4.15	5.36	1.83	2.37
Tune shift x		0.0026	0.0040	0.0020	0.0031	0.0053	0.0081	0.0063	0.0096
Tune shift y		0.1067	0.1069	0.0980	0.0981	0.0752	0.0755	0.1000	0.1001
Long. damping time	msec	13.4	20.3	13.4	20.3	13.4	20.3	26.8	40.6
Energy Loss/turn	MeV	2.11	0.865	2.11	0.865	2.11	0.865	0.4	0.166
σ_{E} (full current)	δΕ/Ε	6.43E-04 7.34E-04		6.43E-04 7.34E-04					
CM σ _E	δΕ/Ε	5.00E-04		5.00E-04		5.00E-04		5.26E-04	
Total lifetime	min	4 23	<u>44</u> 8	3.05	3.00	7.08	7.73	11.41	6.79
Total RF Power	MW	16	.38	12	.37	28	.83	2.	81



The site

Project governance

- Three phases:
 - INFN: the starting phase
 - Consortium: as an independent legal entity


- Following main European infrastructures
- More flexibility in the organisation
- Can directly associate foreign partners (EGO like)
- An "intermediate solution"
- European consortium (ERIC): the final structure

The consortium Cabibbo Lab was created on Oct 7th 2011

http://www.cabibbolab.it/

The Cabibbo Lab

- A CERN like management structure
 - A director general and a directorate
 - A scientific evaluation committee
 - A finance evaluation committee

Costing review

- About 250 M€ allocated by the Italian Government so far
- Costing review requested to estimate the project total cost

- WBS for costing just completed
- Costing document sent to Finance Committee
- Report from committee for Italian Ministry of Research expected by end of November with an intermediate iteration

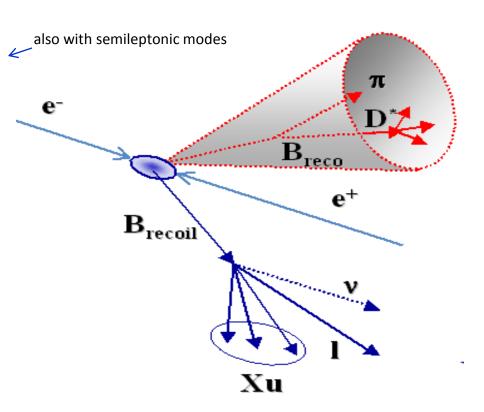
Ministerial review of all "flagship projects" in Fall 2012

Approval path and next steps

- 2009: Special project SuperB-TDR approved by Italian INFN
- 2010: SuperB included in Italian National Research Plan by Ministry of Research as flagship project
- 2011: Consortium Cabibbo Lab established
- 2012:
 - Governance of Cabibbo Lab defined
 - Accelerator management in place
 - Costing WBS
 - Costing review
 - MOUs (INFN, France, SLAC, UK, Russia,...)
 - Lattice completion (LNF+BINP+LAL)
 - Detector TDR
 - Finance committee report to Italian Ministry of Education, University and Research
- 2013:
 - Accelerator TDR
 - Possible start of civil engineering

Summary

- SuperB has a very reach physics program
 - super B, tau, charm factory in a 'clean' environment
 - complementary with an upgraded LHCb
 - large overlap with SuperKEKB+Belle2, a few additional features
- Based on innovative e⁺e⁻ collision scheme
 - "nano" beams
 - baseline luminosity 10³⁶ cm⁻² s⁻¹
- Detector design in advanced stage
 - a few technology options still open but overall mature
 - TDR in 2012
- Approval path
 - costing review in progress
 - next months very important for the future of the project

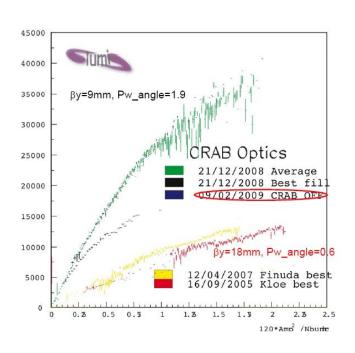

BACKUP SLIDES

B recoil technique

Powerful technique possible at e⁺e⁻ B-factories

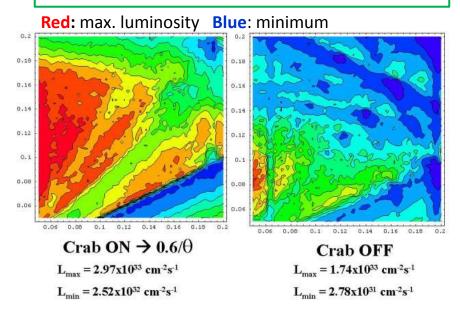
- Fully reconstruct one of the two B in hadronic modes
 - Relatively high efficiency: a few 0.1%
 - $> 10^7 \text{ recoil B's in } 10ab^{-1}$
- Search signal B decay in the remaining of the event
 - High purity sample
 - Can look at channels with a lot of missing energy
 - − For example BR(B \rightarrow nothing) measured, B \rightarrow Kvv, B \rightarrow τ v, ...

unique feature of e⁺e⁻ machine



Recoil kinematics well known
Recoil flavour and charge are determined

Detector R&D


System	Baseline	Challenges and R&D
MDI	Initial IR designed	Magnetic elements and radiation masks.
		Design of tungsten shields. Cryostats radius
		Background simulations: global map, detec-
		tor occupancy
SVT	6-layer silicon	Technology for Layer 0: striplets or pixels.
	Striplets Layer 0	Thin pixels R&D. Readout chip for strips.
		Readout architecture. Mechanical design.
DCH	Stereo-axial He-based	Dimensions (inner radius, length). Mechani-
		cal structure. Cluster counting option.
EMC	Barrel: CsI(Tl)	Electronics and trigger. Mechanical struc-
		ture. Transport and refurbishing.
	Forw: LYSO+CsI(Tl)	Forward EMC technology: LYSO;
		LYSO+CsI(Tl); Pure CsI.
		Backward EMC: cost/benefit analysis
PID	DIRC w/ FBLOCK	Focusing Block design. Photon detection.
		Mechanical structure
		Forward PID: cost/benefit analysis. Prove
		TOF technology.
IFR	Scintillator+ fibers	8 vs 9 layers. SiPM radiation damage and lo-
		cation. Extra 10cm iron. Mechanical design
		and yoke reuse.
ETD	Synchronous const. latency	Fast link rad hardness. L1Trigger (jitter and
		rate). ROM design. Link to computing for
		HLT.

Crab waist tests at DAFNE (2009)

- When the crab waist is turned off:
 - beam size increases
 - luminosity drops down

luminosity scan in the tunes plane performed for DAFNE in the Siddharta configuration

with the crab waist:

- many X-Y betatron resonances disappear or become weaker
- good working area is significantly enlarged (→ larger integrated luminosity)