

The Mu2e Experiment at Fermilab

Xth International Conference on Hyperons, Charm and Beauty Hadrons
Wichita, KS USA

Andrew Norman, Fermilab For the Mu2e Collaboration

A muon talk at a heavy flavor conference?

"Who ordered that?" —I.I.Rabi

"Who ordered that?"

- When the μ was discovered it was logical to think of the μ as just an excited electron
 - So we would expect:
 - BR(μ→eγ)≈10⁻⁴
 - That is, unless another v, in an intermediate vector boson loop canceled it out. (Feinberg, 1958)
 - Same as GIM mechanism!
- Introduced the notion of lepton flavor

Why Precision Measurements & Ultra-Rare Processes?

- We want to access physics beyond the standard model
 - This means access to High and Ultra-High Energy interactions
 - We get to these energies through loops
 - Getting at Loops means making precision measurements and looking for ultra-rare decays
- Ideally we start with processes that are forbidden or highly suppressed in the standard model
 - Any observation becomes proof of non-SM physics

Why Precision Measurements & Ultra-Rare Processes?

- We want to access physics beyond the standard model
 - This means access to High and Ultra-High Energy interactions
 - We get to these energies through loops
 - Getting at Loops means making precision measurements and looking for ultra-rare decays
- Ideally we start with processes that are forbidden or highly suppressed in the standard model
 - Any observation becomes proof of non-SM physics
- Flavor Changing Neutral Currents
 - FCNC in quark sector
 - $B_s \rightarrow \mu\mu$, $b \rightarrow s\gamma$, $K \rightarrow \pi v v$
 - Allowed but HIGHLY suppressed in Standard Model
 - Can receive LARGE enhancements in SUSY and other beyond-SM physics
 - FCNC in charged lepton sector
 - $\mu \rightarrow e\gamma$, $\mu \rightarrow eee$, $\mu N \rightarrow e N$ (Lepton Flavor Violating)
 - No SM amplitudes (except via v loops)
 - Permitted in beyond-SM models, and have extreme reach in energy

Lepton Mixing in the Standard Model

We have three generations of leptons:

$$\begin{pmatrix} e \\ \nu_e \end{pmatrix} \begin{pmatrix} \mu \\ \nu_\mu \end{pmatrix} \begin{pmatrix} \tau \\ \nu_\tau \end{pmatrix}$$

 $\begin{pmatrix} e \\ \nu_e \end{pmatrix} \begin{pmatrix} \mu \\ \nu_{\mu} \end{pmatrix} \begin{pmatrix} \tau \\ \nu_{\tau} \end{pmatrix}$ No SM couplings between generation!

- In the standard model Lagrangian there is no coupling to mixing between generations
- But we have explicitly observed neutrino oscillations
- Thus charged lepton flavor is **not** conserved.
- Charged leptons must mix through neutrino loops

$$Br(\mu \to e\gamma) = \frac{3\alpha}{32\pi} \left| \sum_{\ell} V_{\mu\ell}^{\star} V_{e\ell} \frac{m_{\nu_{\ell}}^2}{M_W^2} \right|^2$$

$$< 10^{-54}$$

But the mixing is so small, it's effectively forbidden

Charged Lepton Flavor Violation (CLFV) Processes with µ's

 There are three basic channels to search for μ-CLFV in:

$$\mu^{+} \to e^{+} \gamma$$

$$\mu^{+} \to e^{+} e^{+} e^{-}$$

$$\mu^{-} N \to e^{-} N$$

 If loop like interactions dominate we expect a ratio of these rates:

 New physics for these channels can come from loop level

For $\mu N \rightarrow eN$ and $\mu \rightarrow eee$ we also can have contact terms

If contact terms dominate then μN→eN can have rates 200 times that of μ→eγ

Charged Lepton Flavor Violation (CLFV) Processes with µ's

 There are three basic channels to search for µ-CLFV in:

$$\mu^{+} \to e^{+} \gamma$$

$$\mu^{+} \to e^{+} e^{+} e^{-}$$

$$\mu^{-} N \to e^{-} N$$

 If loop like interactions dominate we expect a ratio of these rates:

Note: $\mu \rightarrow e \gamma$ and $\mu \rightarrow e e e$ have experimental limitations (resolution, overlap, accidentals)

Ultimately Limits the measurement of: $Br(\mu \rightarrow e\gamma) \approx 10^{-14}$

No such limits on µN→eN channel

 New physics for these channels can come from loop level

For μN→eN and μ→eee we also can have contact terms

If contact terms dominate then $\mu N \rightarrow e N$ can have rates 200 times that of $\mu \rightarrow e \gamma$

Beyond the Standard Model

 The CLFV process can manifest in the μN→eN channel in many models with large branching fractions:

Beyond the Standard Model

 The CLFV process can manifest in the μN→eN channel in many models with large branching fractions:

General CLFV Lagrangian

 Recharacterize these all these interactions together in a model independent framework:

$$\mathcal{L}_{\mathcal{LFV}} = \frac{m_{\mu}}{(\kappa+1)\Lambda^{2}} \bar{\mu}_{R} \sigma_{\mu\nu} e_{L} F^{\mu\nu}$$
 Contact
$$+ \frac{\kappa}{(1+\kappa)\Lambda^{2}} \bar{\mu}_{L} \gamma_{\mu} e_{L} \left(\bar{u}_{L} \gamma^{\mu} u_{L} + \bar{d}_{L} \gamma^{\mu} d_{L} \right)$$

- Splits CLFV sensitivity into
 - Loop terms
 - Contact terms
- Shows dipole, vector and scalar interactions
- Allows us to parameterize the effective mass scale ¤ in terms of the dominant interactions
- The balance in effective reach shifts between favoring ¹N!eN and ¹!e° measurements .
- For contact term dominated interaction (large κ) the sensitivity in Λ , reaches upwards of 10⁴ TeV for the coherent conversion process

Experimental Limits vs. SU(5) SUSY-GUT

SUSY predictions for CLFV processes are only a few orders of magnitude below current experimental limits

Process	Current Limit	SUSY-GUT level
$\mu \: \textbf{N} \to \textbf{e} \: \textbf{N}$	7 x10⁻¹³ W. Bertl, et al EPJ C47(06)337	10 ⁻¹⁶
μo e γ	2.4 x10 ⁻¹² J. Adam, et al PRL 107(11)171801	10 ⁻¹⁴
$ au o \mu\gamma$	4.5 x10 -8 K. Hayasaka, et al PL B666(08)16	10 ⁻⁹

µN→eN Sensitivity to SUSY

 Rates are not small because they are set by the SUSY mass scale

- For low energy SUSY like we would see at the LHC:
 Br(μN→eN) ~10⁻¹⁵
- Makes µN→eN compelling, since for Mu2e this would mean observation of ≈O(40) events [0.5 bkg]

A 2x10⁻¹⁷ single event sensitivity, can exclude large portions of the available SUSY parameter spaces

A.Norman, FNAL BEACH2012 BEACH2012

Tests of SUSY Frameworks

μ→e measurement can distinguish between PMNS and MFV mixing structures in SUSY frameworks

Example: neutrino masses via the seesaw mechanism, analysis is performed in an SO(10 framework). Different predictions for μe conversion with mixing structure.

$\mu N \rightarrow eN$, $\mu \rightarrow e\gamma$, g-2 Work Together

- Knowing μN→eN , μ→eγ allow us to exclude SUSY phase space
- Also knowing the g-2 results allows us to then over constrain SUSY models
- In some cases this permits us to make strong, testable predictions for our models in terms of Br(μ→eγ) & R(μN→eN)

A.Norman, FNAL

BEACH.

$\mu N \rightarrow eN$, $\mu \rightarrow e\gamma$, g-2 Work Together

BEACH

Example:

- From LHC we have the SUSY masses
- From g-2 we know tanβ
- From g-2 we know also know μ>0
- Combining these we get an a priori PREDICTION for:

$$\frac{Br(\mu \to e\gamma)}{R(\mu N \to eN)}$$

under MSSM/MSUGRA

g-2 selects which curve we should be on, and gives us the value of tan

We measure $R(\mu N \rightarrow eN)$ and take the ratio to the MEG result.

Sindrum II

We use this match to prediction as a way to disentangle, or validate, or interpret manifestations of SUSY

chman

SUSY

Many search modes have large effects for some models

But only:

- μ→eγ
- μe conversion

	AC	RVV2	AKM	$\delta \mathrm{LL}$	FBMSSM	LHT	RS
$D^0 - \bar{D}^0$	***	*	*	*	*	***	?
ϵ_K	*	***	***	*	*	**	***
$S_{\psi\phi}$	***	***	***	*	*	***	***
$S_{\phi K_S}$	***	**	*	***	***	*	?
$A_{\rm CP}\left(B \to X_s \gamma\right)$	*	*	*	***	***	*	?
$A_{7,8}(B \to K^* \mu^+ \mu^-)$	*	*	*	***	***	**	?
$A_9(B \to K^* \mu^+ \mu^-)$	*	*	*	*	*	*	?
$B o K^{(*)} \nu \bar{\nu}$	*	*	*	*	*	*	*
$B_s \to \mu^+ \mu^-$	***	***	***	***	***	*	*
$K^+ o \pi^+ u \bar{ u}$	*	*	*	*	*	***	***
$K_L o \pi^0 \nu \bar{\nu}$	*	*	*	*	*	***	***
$\mu \to e \gamma$	***	***	***	***	***	***	***
$\tau \to \mu \gamma$	***	***	*	***	***	***	***
$\mu + N \rightarrow e + N$	***	***	***	***	***	***	***
d_n	***	***	***	**	***	*	***
d_e	***	***	**	*	***	*	***
$(g-2)_{\mu}$	***	***	**	***	***	*	?

Table 8: "DNA" of flavour physics effects for the most interesting observables in a selection of SUSY and non-SUSY models $\bigstar \star \star \star$ signals large effects, $\star \star$ visible but small effects and \star implies that the given model does not predict sizable effects in that observable.

W.Altmanshofer et al., arXiv:0909.1333v2 [hep-ph]

Ordering up $\mu N \rightarrow eN$ at 10^{-16}

MAKING THE MEASUREMENT

The $\mu N \rightarrow eN$ measurement at Br(10⁻¹⁷) (in a nutshell)

- Stop \sim O(5×10¹⁰) μ per pulse on a target (Al, Ti, Au)
- Wait 700ns (to let prompt backgrounds clear)
- Look for the coherent conversion of a muon to a monoenergetic electron:

$$E_e = M_{\mu} - N_{recoil} - (B.E.)_{\mu}^{1S}$$

= 104.96 MeV (on ²⁷Al)

Report the rate relative to nuclear capture

$$\mathcal{R} = \frac{\Gamma(\mu^- N \to e^- N)}{\Gamma(\mu^- N(Z) \to \nu_\mu N(Z-1)d}$$

 If we see a signal, it's compelling evidence for physics beyond the standard model!

µN→eN in Detail

Muonic Atom

- Start with a series of target foils
 - For Mu2E these are Al or Ti
- Bring in the low energy muon beam
 - We stop ≈ 50% of µ's
 - Stopped muons fall into the atomic potential
 - As they do they emit x-rays
- Muons fall down to the 1S state and a captured in the orbit
 - Muonic Bohr Radius

or Size
$$\langle r_{\mu}
angle = rac{n^2 \hbar}{m_{\mu} z e^2} pprox 19.6 \; {
m fm} \; ({
m Al})$$

Nuclear Size

$$R \approx 1.2A^{1/3} \text{fm} = 3.6 \text{ fm (Al)}$$

- Provides large overlap in the muon's wavefunction with the nucleous's
- For Z > 25 the muon is "inside" the nucleous
- Once captured 3 things can happen
 - Decay in Orbit:

$$\mu^- \to e^- \nu_\mu \bar{\nu}_e$$

We use the cascade of muonic x-rays and the well known spectrum to normalize the experiment.

lal time)

1S Muonic Aluminum

adius tapers from 10 cm to 6.5 cm 5cm spacing between foils

Lifetime: 864ns
DIO Fraction: 39.3%

Capture Fraction: 60.7%

Muonic Atom

- Start with a series of target foils
 - We stop ≈ 50% of µ's
- Bring in the low energy muon beam
 - We stop \cong 50% of μ 's
 - Stopped muons fall into the atomic potential
 - As they do they emit x-rays
- Muons fall down to the 1S state and a captured in the orbit
 - Muonic Bohr Radius

• Muonic Bohr Radius
$$\langle r_{\mu} \rangle = \frac{n^2 \hbar}{m_{\mu} z e^2} pprox 19.6 \; {
m fm} \; ({
m Al})$$
 • Nuclear Size

$$R \approx 1.2 A^{1/3} \text{fm} = 3.6 \text{ fm (Al)}$$

- Provides large overlap in the muon's wavefunction with the nucleous's
- For Z > 25 the muon is "inside" the nucleous
- Once captured 3 things can happen
 - Decay in Orbit:
 - Nuclear Capture:

$$\mu^- N(Z) \to \nu N(Z-1)$$

Ordinary Muon Capture (OMC)

Problem

These protons and neutrons constitute a large source of rate in the detector ($\approx 1.2 \text{ per } \mu$)

The energy spectra for these ejected particles is not well known.

Capture is a contact like

iection

interaction, scales as:

 $|\phi_{\mu}(0)|^2 N_{protons} \sim Z^4$

Lifetime: 864ns DIO Fraction: 39.3%

Capture Fraction: 60.7%

Muonic Atom

- Start with a series of target foils
 - We stop ≈ 50% of µ's
- Bring in the low energy muon beam
 - We stop ≈ 50% of μ's
 - Stopped muons fall into the atomic potential
 - As they do they emit x-rays
- Muons fall down to the 1S state and a captured in the orbit
 - Muonic Bohr Radius

• Muonic Bohr Radius
$$\langle r_\mu \rangle = \frac{n^2 \hbar}{m_\mu z e^2} \approx 19.6 \; {\rm fm \; (Al)}$$
 • Nuclear Size

$$R \approx 1.2 A^{1/3} \text{fm} = 3.6 \text{ fm (Al)}$$

- Provides large overlap in the muon's wavefunction with the nucleus's
- For Z > 25 the muon is "inside" the nucleus
- •Once captured 3 things can happen
 - Decay in Orbit
 - Nuclear Capture
 - New Physics! i.e. μ N \rightarrow e N

Nucleus Is Left Unchanged Muon Coherent Conversion to the ground state scales as $\sim Z^5$. Rates: $(\mu N \rightarrow eN)/(OMC)$ rises as Z. Moving to high Z buys you sensitivity

Coherent Conversion ($\mu \rightarrow e$)

E_a ≈ 104.96 MeV

Beam Structure

- μ 's are accompanied by prompt e, π 's,
- These cause dangerous backgrounds (RPC)
- Must limit our beam extinction, and detector live window

Beam Structure

- μ's are accompanied by prompt e, π's,
- These cause dangerous backgrounds (RPC)
- Must limit our beam extinction, and detector live window

Total Backgrounds

 Total expected background for SES 10⁻¹⁷ ≈ 0.41 evts

- Largest Background
 - Decay in Orbit (DIO)

Background	Bkg Est.	Err Est.	Notes
Muon Decay-in-orbit	0.22	± 0.06	Acceptance and energy
			loss modeling, spectrum
			calculation; reco algorithm
\bar{p} Induced	0.10	± 0.05	Cross-section, modeling
Cosmic Ray	0.05	± 0.013	Monte Carlo Stats.
Rad Pion Capture	0.003	± 0.007	Acceptance and energy
			loss modeling
μ decay in flight	0.01	± 0.003	
π decay in flight	0.003	$\pm~0.0015$	
Beam electrons	0.0006	$\pm~0.0003$	
Total	0.41	± 0.08	
\	·	·	· · · · · · · · · · · · · · · · · · ·

Signal Estimates

- For $R_{\mu e} = 10^{-15}$ 40 events / 0.41 bkg (LHC SUSY)
- For R_{μe} = 10⁻¹⁶
 4 events / 0.41 bkg

Observed electron energy is shifted down to 104 MeV due to energy loss in stopping target and smeared by detector resolution

Who ordered this?

THE MU2E DETECTOR IN DETAIL

Production Solenoid

Transport Solenoid

- Designed to minimize beam background rates from the production target
- Removes anti-protons from the beam line in a Be foil
- Sign selects the muon beam
 - Collimator blocks the positives after the first bend
 - Negatives are brought back on axis by the second bend
 - Allows for momentum selection of the beam

The Detector

 Each component is optimized to resolve signal from the *Decay in Orbit* Backgrounds

Straw Tracker (In Vacuum)

- Geometry is optimized for reconstruction of 105MeV helical trajectories
- Extremely low mass
- DIO tracks miss the senstive regions don't contribute to rate

Conclusions

- Mu2e is unique in that it can push down the current limits on R_{ue} by more than four orders of magnitude
- This gives the experiment real discovery potential of physics beyond the standard model
- Mu2e has the ability to complement LHC results or probe beyond the LHC to 10⁴ TeV mass scales

Mu2e received CD-1 on July 11th!

Project-X

ADDITIONAL MATERIAL

Calorimeter

Crystal	LYSO	PbWO ₄
Density (g/cm ³)	7.28	8.28
Radiation length (cm) X_0	1.14	0.9
Molière radius (cm) R _m	2.07	2.0
Interaction length (cm)	20.9	20.7
dE/dx (MeV/cm)	10.0	13.0
Refractive Index at λ_{max}	1.82	2.20
Peak luminescence (nm)	402	420
Decay time τ (ns)	40	30, 10
Light yield (compared to NaI(Tl)) (%)	85	0.3, 0.1
Light yield variation with temperature(%/°C)	-0.2	-2.5
Hygroscopicity	None	None

