Status and Prospects of J-PARC KOTO Experiment

July 27, 2012 @BEACH 2012, Wichita State University Eito IWAI, Osaka University

KOTO experiment

for What?	To search for <u>CPV caused by New Physics</u> beyond the Standard Model
How?	By observing the decay $\ \underline{K_L} ightarrow \pi^0 u ar{ u}$
When?	The first physics run will start in 2013 spring
Where?	J-PARC : Japan Proton Accelerator Research Complex

$$K_L \longrightarrow \pi^0 \nu \bar{\nu}$$
 decay

- decay via direct CPV
- loop diagram: sensitive to New Physics
- well known: theoretical error ~ 2%

•
$$Br^{SM} (K_L \to \pi^0 \nu \bar{\nu}) = (2.43 \pm 0.39) \times 10^{-11}$$

Theoretical models beyond the SM

http://www.lnf.infn.it/wg/vus/content/Krare.html

J-PARC KOTO experiment

KOTO: KO at TOkai

Arizona State, Chicago, CNU, Jeju National, JINR, KEK, Kyoto, Kyungpook National, Michigan, NDA, NTU, Okayama, Osaka, Pusan, Saga, Yamagata

Experimental methods

Experimental methods

Background

Experimental methods

Experimental apparatus

- High intensity K_L beam
- Waveform digitization
- Csl calorimeter
- New Veto detectors

- High intensity K_L beam
- Waveform digitization
- Csl calorimeter
- New Veto detectors

J-PARC Laboratory

Main ring (30 GeV protons)

Experimental Hall

Neutral beam line

Neutral beam line

G. Takahashi et al., Jpn. J. Appl. Phys. 50 (2011) 036701

Beam survey

- We got
 - expected beam profile

G. Takahashi et al., Jpn. J. Appl. Phys. 50 (2011) 036701

Beam survey

- We got
 - expected beam profile

Beam survey

- We got
 - expected beam profile

• 2.6 times larger number of K_L assumed at proposal (by measuring the number of $K_L \to \pi^+\pi^-\pi^0$ decays)

K. Shiomi et al., NIM A 664 (2012) 264

Beam survey

- We got
 - expected beam profile

• 2.6 times larger number of K_L assumed at proposal (by measuring the number of $K_L \to \pi^+\pi^-\pi^0$ decays)

K. Shiomi et al., NIM A 664 (2012) 264

- High intensity K_L beam
- Waveform digitization
- Csl calorimeter
- New Veto detectors

- 14bit FADC
 - to record waveform
 - to form triggers digitally

- 14bit FADC
 - to record waveform
 - to form triggers digitally

- 14bit FADC
 - to record waveform
 - to form triggers digitally

L1 trigger board

local sum of pulses

triggers

- 14bit FADC
 - to record waveform
 - to form triggers digitally

L2/readout board

L1 trigger board

triggered waveform optical links

triggers

- 14bit FADC
 - to record waveform
 - to form triggers digitally

L2/readout board

L1 trigger board

triggered waveform optical links

triggers

- data rate : ~ 1GB/s
- Designed, produced by US

- High intensity K_L beam
- Waveform digitization
- Csl calorimeter
- New Veto detectors

Csl calorimeter

- 6.15 m
- Longer: $30cm \rightarrow 50cm (27X_0)$
- Smaller: 7cm → 2.5/5cm square
- Csl crystals from KTeV experiment

beam test w/ prototype

Csl calorimeter - beam test

measure the energy and timing resolution

$$\frac{\sigma_E}{E} [\%] = \frac{1.3}{\sqrt{E}} \oplus \frac{0.1}{E} \oplus 0.8 \quad (E : \text{GeV}, \ 0^{\circ})$$
 $\sigma_t \text{ [ns]} = \frac{0.12}{\sqrt{E}} \oplus 0.10 \quad (E : \text{GeV})$

$$\sigma_t \text{ [ns]} = \frac{0.12}{\sqrt{E}} \oplus 0.10 \quad (E: \text{GeV})$$

Pulse shape based estimation method

- pulse shape simulation w/ fundamental properties of single photoelectrons
 - typical waveform passing through the Bessel filter
 - probability density function in timing
- absolute light yield: 12.7 p.e./MeV (typical)

Csl calorimeter - performance evaluation

 \checkmark understand σ_E , σ_t from 1st principles

$K_L ightarrow \gamma \gamma ext{ (halo)}$

Incident angle discrimination

- calculate incident angles assuming signal and BG
- calculate the likelihood of the observed shower shape for each assumption

$$L_i = \prod_{j;\gamma} \prod_{x,y} \prod_{k;\text{row}} P(e_k|E_j, d_k, \theta_{ij}, \phi_{ij})$$

PDF in a certain condition for each incident angle

Incident angle discrimination: rejection power

- rejection power @ 83% signal efficiency
 - 53 for $K_L \to \gamma \gamma$ decay in the beam halo
 - (8.7 for $\eta \to \gamma \gamma$)

$$\begin{array}{c} 0.4 \\ 0.35 \\ 0.25 \\ 0.25 \\ 0.15 \\ 0.05 \\ K_L \rightarrow \gamma\gamma \text{ (halo)} \\ 0.05 \\ K_L \rightarrow \gamma\gamma \text{ (halo)} \\ 0.05 \\ C = CZ_\pi[\text{cm}] \end{array}$$

$$\text{Likelihood ratio} = \frac{L_{\text{signal}}}{L_{\text{signal}} + L_{\text{BG}}}$$

Csl calorimeter

- Longer: $30cm \rightarrow 50cm (27X_0)$
- Smaller: 7cm → 2.5/5cm square
- Csl crystals from KTeV experiment

Csl calorimeter - cosmic rays

Csl calorimeter - $K_L \to \pi^0 \pi^0 \pi^0$

Reconstructed Mass with 6 Gamma Event

Csl calorimeter - $K_L \to \pi e \nu$

- High intensity K_L beam
- Waveform digitization
- Csl calorimeter
- New Veto detectors

Charged Veto

- Thin(3mm) to suppress neutron interaction
- <10⁻³ inefficiency (2 planes ~10⁻⁶)
 - >10p.e./100keV

Charged Veto

- Thin(3mm) to suppress neutron interaction
- <10⁻³ inefficiency (2 planes ~10⁻⁶)
 - •>10p.e./100keV

- Purpose
 - Veto photons
 - count halo neutrons
- 48 3-Csl-block modules

6.15 m

Beam Hole Photon Veto

- Veto photons escaping to the beam hole
- Aero-gel cerenkov detector (25 modules)
 - good efficiency for photons
 - inefficient for neutrons in the beam core

Main Barrel

Prospect

2012 Dec

2013 Mar

May

July 2014 Jan Engineering runs in air/vacuum

Short Physics run

Long Physics run ~1month@15kW

⇒ to cross the Grossman-Nir bound

A long shut-down for Linac upgrade

Prospect

http://www.lnf.infn.it/wg/vus/content/Krare.html

Prospect

http://www.lnf.infn.it/wg/vus/content/Krare.html

Summary

- KOTO is the dedicated experiment to search for CPV caused by New Physics beyond the SM by observing $K_L \to \pi^0 \nu \bar{\nu}$ decay
- High intensity K_L beam and upgraded detectors were designed and prepared
- Experimental apparatus is almost ready to take physics data
 - The first physics run will start in 2013 spring, and the experimental sensitivity will cross the Grossman-Nir bound
 - → New physics search
- The expected final sensitivity of KOTO will reach the SM prediction

- * 92 x 3mm thick scintillators
- read by WLS fibers+ MPPC

Discovery Level

