Status and Prospects of J-PARC KOTO Experiment

July 27, 2012 @BEACH 2012, Wichita State University
Eito IWAI, Osaka University

KOTO experiment

for What?	To search for CPV caused by New Physics beyond the Standard Model
How?	By observing the decay $\underline{K_{L} \rightarrow \pi^{0} \nu \bar{\nu}}$
When?	The first physics run will start in 2013 spring
Where?	J-PARC : Japan Proton Accelerator Research
Complex	

$\stackrel{\mathrm{CP}-}{K_{L}} \rightarrow^{C \mathrm{CP}+}{ }^{0} \nu \bar{\nu}$ decay

A Feynman diagram of the decay.

- decay via direct CPV
- loop diagram : sensitive to New Physics
- well known : theoretical error ~ 2\%
- $B r^{\mathrm{SM}}\left(K_{L} \rightarrow \pi^{0} \nu \bar{\nu}\right)=(2.43 \pm 0.39) \times 10^{-11}$

History of the experimental results

Published year

Theoretical models beyond the SM

http://www.Inf.infn.it/wg/vus/content/Krare.html

J-PARC KOTO experiment

- KOTO : KO at TOkai

Arizona State, Chicago, CNU, Jeju National, JINR, KEK, Kyoto, Kyungpook National, Michigan, NDA, NTU, Okayama, Osaka, Pusan, Saga, Yamagata

Experimental methods

Experimental methods

Signal
 Calorimeter

Background

$$
K_{L} \rightarrow \pi^{0} \pi^{0}
$$

Experimental methods

Signal
 Calorimeter

Background

Experimental apparatus

- High intensity Kı beam
- Waveform digitization
- Csl calorimeter
- New Veto detectors
- High intensity KL beam
- Waveform digitization
- Csl calorimeter
- New Veto detectors

J-PARC Laboratory

- Main ring (30 GeV protons)

Experimental Hall

Neutral beam line

Neutral beam line

G. Takahashi et al., Jpn. J. Appl. Phys. 50 (2011) 036701

Beam survey

- We got
- expected beam profile

G. Takahashi et al., Jpn. J. Appl. Phys. 50 (2011) 036701

Beam survey

- We got
- expected beam profile

Beam survey

- We got
- expected beam profile

- 2.6 times larger number of KL assumed at proposal (by measuring the number of $K_{L} \rightarrow \pi^{+} \pi^{-} \pi^{0}$ decays)

electromagnetic calorimeter (array of undoped Csl crystals)

Beam survey

- We got
- expected beam profile

- 2.6 times larger number of KL assumed at proposal (by measuring the number of $K_{L} \rightarrow \pi^{+} \pi^{-} \pi^{0}$ decays)

K. Shiomi et al., NIM A 664 (2012) 264
- High intensity Kı beam
- Waveform digitization
- Csl calorimeter
- New Veto detectors

Waveform readout

- 14bit FADC
- to record waveform
- to form triggers digitally

Waveform readout

- 14bit FADC

- to record waveform
- to form triggers digitally

Waveform readout

- 14bit FADC
- to record waveform
- to form triggers digitally

Waveform readout

- 14bit FADC
- to record waveform
- to form triggers digitally

Waveform readout

- 14bit FADC
- to record waveform
- to form triggers digitally

- High intensity Kı beam
- Waveform digitization
- Csl calorimeter
- New Veto detectors

Csl calorimeter

- Longer: 30cm \rightarrow 50cm (27Xo)
- Smaller : 7cm $\rightarrow 2.5 / 5 \mathrm{~cm}$ square
- Csl crystals from KTeV experiment

beam test w/ prototype

Csl calorimeter - beam test

- measure the energy and timing resolution

$$
\frac{\sigma_{E}}{E}[\%]=\frac{1.3}{\sqrt{E}} \oplus \frac{0.1}{E} \oplus 0.8 \quad\left(E: \mathrm{GeV}, 0^{\circ}\right)
$$

$$
\sigma_{t}[\mathrm{~ns}]=\frac{0.12}{\sqrt{E}} \oplus 0.10 \quad(E: \mathrm{GeV})
$$

Pulse shape based estimation method

- pulse shape simulation $w /$ fundamental properties of single photoelectrons
- typical waveform passing through the Bessel filter
- probability density function in timing
- absolute light yield : 12.7 p.e./MeV (typical)

Csl calorimeter - performance evaluation

\checkmark understand $\sigma_{\mathrm{E}}, \sigma_{\mathrm{t}}$ from 1 st principles

- calculate incident angles assuming signal and BG
- calculate the likelihood of the observed shower shape for each assumption

Incident angle discrimination : rejection power

- rejection power @ 83\% signal efficiency
- 53 for $K_{L} \rightarrow \gamma \gamma$ decay in the beam halo
- (8.7 for $\eta \rightarrow \gamma \gamma$)

Likelihood ratio $=\frac{L_{\text {signal }}}{L_{\text {signal }}+L_{\mathrm{BG}}}$

Csl calorimeter

- Longer: 30cm \rightarrow 50cm (27Xo)
- Smaller : 7cm $\rightarrow 2.5 / 5 \mathrm{~cm}$ square
- Csl crystals from KTeV experiment

Csl calorimeter - cosmic rays

Csl calorimeter - $K_{L} \rightarrow \pi^{0} \pi^{0} \pi^{0}$

Reconstructed Mass with 6 Gamma Event

Csl calorimeter - $K_{L} \rightarrow \pi e \nu$

- High intensity Kı beam
- Waveform digitization
- Csl calorimeter
- New Veto detectors

Charged Veto

- Thin $(3 \mathrm{~mm})$ to suppress neutron interaction
- <10-3 inefficiency (2 planes ~10-6)
->10p.e./100keV

Charged Veto

- Thin(3mm) to suppress neutron interaction
- <10-3 inefficiency (2 planes ~10-6)
->10p.e./100keV

Neutron Collar Counter

- Purpose
- Veto photons
- count halo neutrons
- 48 3-Csl-block modules

Beam Hole Photon Veto

- Veto photons escaping to the beam hole
- Aero-gel cerenkov detector (25 modules)
- good efficiency for photons
- inefficient for neutrons in the beam core

Main Barrel

Prospect

2012 Dec

2013 Mar

Short Physics run

Long Physics run ~1 month@15kW

\Rightarrow to cross the Grossman-Nir bound
July
2014 Jan

Engineering runs in air/vacuum

May

A long shut-down for Linac upgrade

Prospect

http://www.Inf.infn.it/wg/vus/content/Krare.html

Prospect

http://www.Inf.infn.it/wg/vus/content/Krare.html

Summary

- KOTO is the dedicated experiment to search for CPV caused by New Physics beyond the SM by observing $K_{L} \rightarrow \pi^{0} \nu \bar{\nu}$ decay
- High intensity KL beam and upgraded detectors were designed and prepared
- Experimental apparatus is almost ready to take physics data
- The first physics run will start in 2013 spring, and the experimental sensitivity will cross the Grossman-Nir bound
\Rightarrow New physics search
- The expected final sensitivity of KOTO will reach the SM prediction

* $92 \times 3 \mathrm{~mm}$ thick scintillators
* read by WLS fibers + MPPC

Discovery Level

